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For Newtonian fluid, the standard model 
to describe the imbibition dynamics is 
the celebrated Lucas–Washburn equation 
(LWE)[1,2]
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Here h(t) is the imbibition length of the 
fluid inside the pore, R is the pore radius, γ 
is the surface tension of the fluid, θE is the 
equilibrium contact angle, and η0 is the fluid 
viscosity in the bulk. The dynamical scaling 
of t1/2 has been found in many phenomena 
involving capillarity and wetting.[3] Extensive 
studies by experiments,[4–7] theory,[8,9] and 
simulations[10–12] have advanced our under-
standing on the capillary filling, but there 
are still new avenues to be explored.[13,14]

An implicit assumption in the derivation of Lucas–Wash-
burn equation is that the size of fluid particles should be an 
order of magnitude smaller than the pore radius. This is valid 
for simple fluids, for example, when water (≈10−10 m) fills an 
µm-size glass pore. Experimentalists nowadays can probe the 
range where the two length scales are comparable: for example, 
when a polymer (radius of gyration Rg  ≈ 10 − 100 nm) pen-
etrates into self-ordered nanoporous aluminum oxide (AAO) 
(also R ≈ 10 − 100 nm).[13,14] Surprisingly, the dynamical scaling 
of t1/2 is consistently observed in experiments and remains 
valid in the nanometer ranges. However, the prefactor A 
exhibits interesting behaviors even for simple liquids.[5] From 
the experimentally measured A value, one can deduce an effec-
tive viscosity
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The value of ηeff is in general different than the bulk value  
η0.

Recent experiments have shown a complex behavior of the 
effective viscosity for capillary imbibition of polymer melts 
into nanoscale pores.[14] Capillary penetration of a series of 
entangled poly(ethylene oxide) (PEO) melts within nanopores 
of self-ordered alumina followed h t~ 1/2  behavior according 
to the LWE. However, a reversal in dynamics of capillary 
filling has been observed with increasing polymer molecular 
weight. Polymer chains with 50 entanglements or less showed 
a slower capillary filling than theoretically predicted, indi-
cating a higher effective viscosity. For longer chains with more 
entanglements, the capillary filling was faster than the theory 
and the effective viscosity was reduced as compared to bulk. 
In this article, we present a possible explanation for this unu-
sual observation.

Polymer Melts

A unified theory for the imbibition dynamics of entangled polymer melting 
into nanopores is presented. Experiments demonstrate the validity of t1/2 
dependence but contradict the predictions of the classical Lucas–Washburn 
equation because of the prefactor. A reversal in dynamics of capillary filling is 
reported with increasing polymer molecular weight. Polymer imbibition under 
nanometer confinement can be discussed by two mechanisms: one is the 
standard hydrodynamic flow, resulting in a parabolic flow profile. When the 
inner wall has a strong attraction to the polymer, a layer of immobile chains is 
created, resulting in an increase of the effective viscosity and to slower imbi-
bition. The other is the reptation model proposed by Johner et al., leading to a 
plug flow profile and to the reduction in the effective viscosity (faster imbibi-
tion). The reversal in dynamics of polymer imbibition can be explained by the 
competition between these two mechanisms.

1. Introduction

Understanding fluid dynamics in a confined geometry is 
important in many different fields such as engineering, 
physics, chemistry, biotechnology, and nanotechnology. Suc-
cessful applications include the development of inkjet print-
heads for commercial xerography, synthesis and production 
of various nanoparticles and polymeric materials on a lab-on-
a-chip device, separation and manipulation of DNA or other 
bio-macromolecules, and on-the-spot medical diagnosis in clin-
ical pathology. Under spatial confinement, the volume of the 
fluid reduces, and the surface-to-volume ratio increases. This 
leads to the fact that the interaction between the fluid and the 
surface, i.e., the capillary effect, becomes the dominant factor 
among many other interactions. A canonical example is the 
fluid imbibition into a pore with hydrophilic inner surfaces. 
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2. Theoretical Considerations

We first present a brief derivation of the Lucas–Washburn equa-
tion. Let us consider a cylindrical pore of radius R (schemati-
cally shown in Figure 1). One end of the pore is in contact with 
a Newtonian fluid bath, and the fluid is drawn into the pore 
under capillarity. The dynamics of the filling can be described 
by h(t), the length of the fluid inside the pore.

There are two opposite forces acting on the fluid.

i)	 Capillary force

F R R2 2 cosc SV SL Eπ γ γ π γ θ( )= − =
� (3)

where γSV, γSL, and γ are the interfacial tension between 
solid/vapor, solid/fluid, and fluid/vapor, respectively. These 
three interfacial tensions are related by the Young’s relation, 
γSV −  γSL =  γ cosθE, where θE is the equilibrium contract angle. 
Here we only consider a hydrophilic surface, i.e., θE < 90°. The 
capillary force drives the imbibition.

ii)	 Viscous force

πη=F hv8v 0 � (4)

where η0 is the fluid viscosity and v  =  dh/dt is the filling 
speed. The prefactor depends on the pore geometry, and for 
circular pore it equals to 8π. The viscous force provides the fric-
tion against the imbibition.

The balance between the capillary and viscous forces results 
in the evolution equation

R hv2 cos 8E 0π γ θ πη=
� (5)
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The solution to the above equation is
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This is the classical Lucas–Washburn Equation (1) with h t~ 1/2  
scaling.

We would like to point out some general requirements 
for systems to have the t1/2 scaling. The left-hand side of the 
force balance Equation (5) is a thermodynamic force, which 
can be derived from conserved potential energy. This term 
must not depend on h. A counterexample is the capillary 
rising when gravity is important. In this case, the gravitational 

force is proportional to the mass of the fluid, and h(t) eventu-
ally approaches an asymptotic Jurin’s height at long time. The 
right-hand side of the force balance Equation (5) is related to 
the energy dissipation. In the simplest form of Equation (4), 
the force is due to the viscous dissipation resulting from the 
parabolic flow profile. This term must be proportional to h. A 
counterexample is the dissipation in the meniscus at the fluid 
front. In this case, a friction force related to the meniscus has 
no h-dependency, and the resulting evolution of h(t) would not 
be of the Lucas–Washburn type (t1/2).

In the following, we will consider the imbibition of poly-
meric fluids into nanopores. We focus on the situation where 
the Lucas–Washburn scaling t1/2 is valid, and consider various 
effects that may lead to different prefactors in a modified LWE.

2.1. Confinement Effect

When the pore diameter is of the same order as the molecule 
size, as in our case of polymeric fluids, the conformation of the 
polymer chain is perturbed. In general, polymer chains have 
higher free energy in the pores than in the bulk. This reduces 
the driving force for the filling, and may be described by an 
effective surface tension

γ γ θ= − ∆f
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�
(8)

where Δf is the change in the free energy density of a polymer 
melt under confinement in comparison to the bulk.

We may evaluate Δf using the blob model.[15] The polymer 
chains are under biaxial confinement and can be viewed as a 
sequence of compression blobs of the pore diameter 2R. For 
ideal chains, the number of monomer g in each compression 
blob is given by g  = (2R/b)2 , where b is the statistical length of 
the monomer (Kuhn length). The number of blobs per chain is 
given by N/g, where N is the number of monomers per chain. 
The free energy penalty due to confinement is of the order of 
kBT per compression blob, i.e., ΔF  = kBT N/g  = kBT Nb2/(4R2). 
To obtain the free energy density, we use the number density of 
the polymer chain 1/(v0N), where v0 is the monomer volume. 
The difference in the free energy density Δf is then given by
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We estimate the effect of confinement by comparing the two 
terms in Equation (8). The ratio between these two terms is

k T b
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(10)

Using the experiments of PEO in AAO pores as an 
example[14]: v0  =  6.04  ×  10−29 m3, T  =  358 K, kBT  
=  4.94  × 10−21 J, γ cos θE  =  0.02 J m−2, b  =  0.68 nm, and 
2R  =  35 nm, this results a ratio of 0.014. This is too small an 
effect to account for the increase in the effective viscosity. Note 
here we considered the confinement energy based on an iso-
lated ideal chain. For the melt system, this energy is due to the 
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Figure 1.  A sketch of fluid imbibition into a cylindrical pore.
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fluctuation-induced long-range interaction and was shown to 
be even smaller [b/R of Equation (9)].[16,17]

2.2. Dead Zone Effect

For simple fluids, the flow profile inside the pore has a parabolic 
profile, a result of the Stokes equation and no-slip boundary 
condition on the wall. For polymeric fluids, the polymer chains 
near the inner wall can be strongly adsorbed. There exist exper-
imental evidences for that from dielectric spectroscopy meas-
urements for polymers confined to nanoporous alumina.[18] 
These immobile chains create a “dead zone” of thickness ΔR. 
We define an effective radius of the pore by Reff = R − ΔR, and 
consider the effect of dead zone on the imbibition speed.

Outside the dead zone, the polymer melts exhibit a macro
scopic flow with the usual parabolic profile. We rewrite 
Equation (6) in term of a pressure
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where ΔP is the Laplace pressure that drives the imbibition. 
This term remains unchanged when the dead zone is consid-
ered, but we have to replace R2 in the numerator by Reff

2 . Since 
only R R/eff

2 2  portion of the polymer contributes to the flow, the 
fluid front advances at the rate
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Comparing the above equation to Equation (6) with 
η0 replaced by an effective viscosity ηeff, defined by 

γ θ η=h R hEcos /(4 )eff
 , we obtain the following expression for ηeff
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Since Reff  < R, we have ηeff  > η0. Also because of the fourth 
power, the effect of dead zone is quite substantial even for a 
small change in Reff. This is the origin of the slow-down in the 
imbibition dynamics for shorter chains.

2.3. Reptation under Confinement

As the pore radius is reduced and becomes comparable to the 
thickness of the dead zone, the macroscopic flow is nearly 
stopped. The material transport under very strong confinement 
is achieved mainly by the reptation of free polymer chains in a 
network driven by the pressure gradient. Johner et al. has devel-
oped a theoretic framework for this scenario.[8] Here we present 
their results for completeness, while also include the pore-size 
dependence of the pressure gradient.

Figure 2 shows one single free chain under a pressure 
gradient. A polymer chain is constrained by other chains 
due to entanglements, and as such it can only move along 
the “reptation tube”. Each free polymer chain experiences a 
driving force due to the pressure difference along the chain  

[−p(x +Rx) + p(x)] ℓ2 = − ℓ2Rx∂p/∂x, where ℓ2 is the cross sec-
tion and Rx is the x-component of the end-to-end vector. The 
friction to the free chain is given by Nζvc, where N is number 
of segments, ζ is the friction constant for one Kuhn segment, 
and vc is the chain’s velocity along the reptation tube. The 
balance between the pressure gradient and the frictional 
force gives

ζ
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The averaged velocity for the center of mass of the polymer 
is
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where L is the contour length of the tube, given by L =  (N/Ne)at. 
Ne is the entanglement length and =a N bt e  is the tube diam-
eter. The average of Rx

2  is assumed to be ideal 〈 〉 =R Nbx (1/3)2 2.
If the fraction of polymer chains participating the reptation 

is ϕ, the filling speed is then given by

ϕ ϕ
ζ
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where we averaged the pressure gradient along the whole fluid, 
− ∂p/∂x  =  ΔP/h  =  2γ cosθE.

Complication arises when one needs to specify the cross-
section ℓ2. One natural choice is the cross-section of the reptation 
tube

ϕ
ζ
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In reference [8], Johner et al. used
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The only difference is in the scaling with respect to Ne. Here 
we shall assume a general form of
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Figure 2.  Schematics of reptation motion of a polymer chain under a 
pressure gradient.



© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800087  (4 of 5)

www.advancedsciencenews.com www.mrc-journal.de

ϕ
ζ

γ θ=
α

h
N b

N hR3
2 cose

3
E

 � (19)

where α is the exponent.

2.4. Summary on Effective Viscosity

In the case of Rg << R, the dead-zone effect is dominant and the 
filling dynamics is given by Equation (12). In the other limit,  
Rg >> R, the reptation mode is important and the filling 
dynamics is governed by Equation (19). A simple formula to 
interpolate these two limits is
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We again define an effective viscosity by
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Comparing the above two equations, we obtain

η
η

φ η
ζ

= 



 +











α −
R

R

N b

NR

8
3

eff

0

eff
4

e
3

0
2

1

�
(22)

In the limit of small pore, the first term in the square bracket 
vanishes because Reff → 0. The effective viscosity is then domi-
nant by the second term

η η η





−

N
N~ ~eff 0

0
1

1

�
(23)

This is quite different than the bulk scaling η N~0
3. Thus con-

fined polymers show an enhanced mobility, consistent with 
the experiment findings in references [13,14] that have shown 
exponents of ≈ 1.4 and ≈ 0.9, respectively.

3. Comparison to the Experiment and Discussion

We compare our theoretical model with the capillary filling 
experiments in reference [14]. The bulk properties of PEO melts 
of different molecular weights are shown in Table 1. A fit to the 
viscosity gives η N~0

2.91, which indicates that we may use the 
standard formulation of Doi–Edwards model[19]
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The effective viscosity in Equation (22) can be rewritten as
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The first function f is related to the dead-zone
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The second function g is from the reptation model
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where we have used Equation (24) and grouped parameters into 
one single factor φ. In the end, we have two free parameters: 
ΔR and φ. In principle, these two parameters may vary for dif-
ferent pore radii and molecular weights. As a first attempt, we 
neglect that dependence and assume ΔR and φ are constants.

Figure 3 shows the comparison between the experiment and 
theory. We plot the ratio of the effective viscosity to the bulk vis-
cosity as a function of 1/R, the inverse of the pore radius, for a 
polymer with various molecular weights. The fitting parameters 
are obtained by global fitting resulting to

Macromol. Rapid Commun. 2018, 39, 1800087

Table 1.  PEO melt properties.

Sample γ [10−3 N m−1] θE [°] η0 [Pa s]

PEO 50k 29.1 44.0 4.3 × 102

PEO 100k 27.8 44.5 3.9 × 103

PEO 280k 28.0 44.0 1.5 × 105

PEO 500k 28.1 40.7 4.6 × 105

PEO 1M 28.0 47.7 2.7 × 106

Figure 3.  Comparison between the experiment and the theory. The sym-
bols are shown for the experimental data taken from reference [14]. The 
lines are from theoretical prediction of Equation (25).
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R 34.3 nm, 3.21 10 nm5 2φ∆ = = ×  
−

�
(28)

The theoretic prediction is in qualitative agreement with the 
experimental data. Most importantly, the theory has captured 
the non-monotonic variation in the effective viscosity. The main 
reason for the non-monotonic behavior is that functions f and 
g vary differently with respect to 1/R. In the large pore limit, 
these two functions f → 1 while g → 0, and the effective viscosity 
approaches the bulk value, ηeff → η0. As the pore radius decreases 
(1/R increases), the effect of the dead zone becomes important 
and eventually stops the macroscopic flow. Accordingly, the func-
tion f decreases. On the other hand, for small pores the reptation 
motion of the entangled polymer becomes effective and function 
g increases. It is the opposite trends in the functions f and g that 
lead to the non-monotonic variation of the effective viscosity as 
observed experimentally.

The inversion point, i.e., the value of 1/R when the effec-
tive viscosity has its maximum, is a function of the molecular 
weight. For polymers of low molecular weight, the inversion 
point corresponds to a pore radius that is comparable with the 
thickness of the dead-zone, ΔR. Alternatively, for longer chains, 
the maximum shifts towards 1/R → 0, i.e., to the very weak con-
finement limit.

4. Summary

We present a theoretical model for the imbibition dynamics 
of entangled polymer melts into nanopores. Experiments have 
demonstrated the validity of the t1/2 scaling, however the Lucas–
Washburn equation breaks down because of the prefactor. We 
have considered various effects that can affect the imbibition 
dynamics while preserving the t1/2 scaling:

i)	 The effect of confinement. Biaxial confinement of polymer 
chains induces a penalty in the free energy, but the effect is 
too small to explain the slow-down in dynamics.

ii)	 The effect of adsorption. Strongly-adsorbed chains create a 
dead zone, reducing the pore radius, and leading to an in-
crease in the effective viscosity.

iii)	The effect of reptation under a pressure gradient: The repta-
tion of polymer chains under strong confinement[8] enhances 
the mobility of confined chains, leading to faster imbibition.

The overall imbibition dynamics can be discussed by the 
competition of the latter two mechanisms. The theoretical pre-
dictions capture the main features of the experiment being in a 
qualitative agreement with the experiments.

Note: We recently demonstrated a very interesting imbib-
tion behavior for binary mixture of polymer chains [https://doi.
org/10.1021/acs.macromol.7b02724].
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