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Abstract

In this article, we obtain the weak and strong rates of convergence of time integrals of non-smooth
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1 Introduction

LetX = (Xt)t∈[0,T ] be a 1-dimensional diffusion process defined on a filtered probability space (Ω,F, (Ft)t≥0,P)
as the solution of the stochastic differential equation (sde)

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0 ∈ R, t ∈ [0, T ], (1.1)

where W is a one dimensional standard Brownian motion and the coefficients b, σ : R→ R are bounded with
bounded derivatives.

The problem of estimating E[f(F (X))], where X = (Xt)t∈[0,T ], f : R → R and F : C[0, T ] → R with
C[0, T ] is the set of continuous real valued functions over the time interval [0, T ], is of interest in the recent

literature of weak approximations. For example, the cases of F (X) =
∫ T
0
h(Xs)ds where h is in general a

measurable bounded function and F (X) = maxs≤T Xs are two typical examples. In both cases, one observes
that the functional F is not regular and therefore the analysis of the error can not be carried out with classical
techniques such as the ones exposed in [13] (see also [1, 16] for other related cases and techniques).

To the best of our knowledge, most of the previous results that evaluate a weak/strong rate of convergence
in this setting assume that the functional F is Lipschitz or smooth with respect to supremum norm.

In this paper we study the rate of convergence of a numerical scheme to estimate the expectation of some
path dependent irregular functionals of X. To be more precise, we want to estimate

I(f) = E
[
f
(∫ T

0

h(Xs)ds
)]
,

where f is a smooth function with polynomial growth at infinity and h is a function which is not necessarily
smooth. For example, this is the case of h(x) = I{x∈A} where A ⊂ R or h(x) = δ0(x), the Dirac delta
distribution function at 0.

We remark that in our case, the functional F : X 7→
∫ T
0
I{Xs∈A}ds is not continuous in the sup-norm

topology of C[0, T ]. It is worth to note here that the path dependent random variable
∫ T
0
I{Xs∈A}ds is usually

called the occupation time of X in A. In the case that h(x) = δ0(x) then F stands for the local time of X
up to time T at 0.
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Estimating how much time a diffusion spends on a set is an important problem in various applications.
This is a classical problem which appears in many applied domains such as mathematical finance, queueing
theory and biology.

For example, the occupation time of continuous diffusion processes plays an important role in pricing
some type of occupation time derivatives like corridor option and eddoko option (see [7, 15, 2, 4, 5, 8] and
references therein). Generally speaking, the price of such options depends on the amount of time that the
continuous time price process, say X, stays in some designated intervals.

In this article we study the Lp(P)-strong approximation error{
E

[∣∣∣ ∫ T

0

h(Xs)ds− h(Xηn(s))ds
∣∣∣p]}1/p

(1.2)

and the weak approximation error∣∣∣∣∣E
[
f
(∫ T

0

h(Xs)ds
)
− f

(∫ T

0

h(Xηn(s))ds
)]∣∣∣∣∣ .

Here we have used the notation ηn(s) = max{ti, ti ≤ s} for a uniform partition πn = {ti = iT
n ; i = 0, ..., n}

and h lies within a class of non-necessarily regular functions that admit h(x) = I{x∈A} or h(x) = δ0(x) as an
example.

As one needs to simulate Xti for different values of i = 1, ..., n, we concentrate on the one dimensional
case and use the retrospective exact simulation method introduced in [3] to generate independent copies of
discrete samples of X and then use the Monte Carlo method to approximate I(f).

From a heuristic mathematical point of view, one may say that the time integral operator in F should
regularize the properties of F . On the other hand, the fact that h is a non-regular function or even a
Schwartz distribution function introduces a strong non-regular character in the integrand of F . The rates of
convergence for the strong and weak approximation errors which appear in Theorems 2.3, 2.4 and 2.6 reflect
the interplay between these two opposing characteristics.

We now proceed with a discussion of the method of analysis used for the problem and its relationship
with other close results in the literature.

In the particular case that f(x) = x the study of the weak rate of convergence has been done in [10]
and [9] using basic estimates on the forward-backward Kolmogorov equation and a clever combination with
classical techniques. This technique is not applicable to our case. In fact, if one applies a Taylor expansion
to the error

E

[
f
(∫ T

0

I{Xs∈A}ds
)
− f

(∫ T

0

I{Xηn(s)∈A}ds
)]

,

one quickly finds out that the irregularity of the functional F (X) =
∫ T
0
I{Xs∈A}ds appears in multiplicative

form in the error and therefore the expansion only makes the problem more difficult to handle. This problem
does not appear in the particular case that f(x) = x and therefore the interchange between expectation and
integral makes the problem somewhat easier.

In order to find the strong rate of convergence in (1.2) for moderate irregular functions h (e.g. the
indicator function), we first consider a class A (defined before Proposition 2.1), which includes the indicator
function. In particular, in the definition of property A(iii), it is important that uniform upper estimates of
expectations of {h′N}N∈N are satisfied where {hN}N∈N is an approximation sequence of h.

Next, we assume uniform ellipticity for the diffusion coefficient σ in order to apply the Lamperti transform
to X in (1.1) so that the problem is reduced to the consideration of a simpler process Y which has a unit
diffusion coefficient. For Y we have uniform bounds on its Malliavin derivatives and Gaussian bounds on its
density, both of which are needed in our proofs (see Section 3.1 and Remark 3.2 for more details).

Then our method uses the case f(x) = x as a first building block and then a centering argument together
with the Clark-Ocone formula allows us to obtain a first expression for the error. This formula explodes due
to the stochastic derivative in the Clark-Ocone formula. On the other hand, one obtains some regularity due
to the time integrals of conditional expectations which allow us to deal with the general case in a non-trivial
manner.

The technique described above which is used in order to obtain the strong rate of convergence may have
a wider applicability. In fact, it also serves to study of the corresponding weak type problem and further to
investigate the approximations of local time.

2



This is our second step: to consider approximations for local times. We obtain the strong rates of
convergence and the weak rates in the case where f is a polynomial function.

As mentioned before, the use of the Lamperti transformation and the uniform ellipticity assumption
are crucial for the success of our method of proof. The cases where f satisfies weaker conditions, X is
multi-dimensional or the diffusion σ is not uniformly elliptic remain as challenging problems.

Throughout the article, constants are denoted by C or K which may change from one line to the next and
which are independent of the partition n, N and ε (to be introduced later as the approximation parameter
for the Dirac delta function) but may depend on other parameters of the problem such as the time parameter
T > 0, the coefficients of the sde or the initial point x0. The time T is fixed throughout the article.

C1(A,B) denotes the space of once continuously differentiable functions from A to B. In the case that
A = B, we use the notation C1(A) ≡ C1(A,A) and C1 ≡ C1(R). Similarly, Ckb (R) denotes the space of real
valued bounded functions which are k ∈ N times continuously differentiable with bounded derivatives. Lp(µ)
denotes the space of p-th power integrable functions with respect to the measure µ and which induces a norm
denoted by ‖ · ‖Lp(µ).

2 Main results

A function h is called exponentially bounded if there exist positive constants K1,K2 such that |h(x)| ≤
K1e

K2|x|.
Ckexp(R, A) denotes the space of exponentially bounded functions taking values in A, which have continuous

derivatives of any order up to k . In the case where A = R, we may just write Ckexp(R). In the particular case

that α ∈ (0, 1] we also define Ĉαexp(R, A) as the space of α-Hölder exponentially bounded functions. Note in

particular that Ĉ1
exp(R, A) 6= C1

exp(R, A).
Let A be a class of exponentially bounded functions h : R → R such that there exists a sequence of

functions (hN )N∈N ⊂ C3
exp(R) satisfying:

A(i) : hN → h in L1
loc(R),

A(ii) : supN |hN (x)|+ |h(x)| ≤ K1e
K2|x| for some constant K1,K2,

A(iii) : K(h) := supN,u∈[0,CT ]

∫
|h′N (x)|e− x

2

u dx <∞, for every positive constant C.

Note that K(h) defines some notion of norm which will appear in the error estimates. Clearly, Ĉ1
exp(R) ⊂ A.

The following Proposition shows that the class A is even larger.

Proposition 2.1. A is a vector space on R. Furthermore, A contains all monotone, exponentially bounded
functions.

Proof. It is obvious that A is a vector space on R. Now we show that A contains all monotone, exponentially
bounded functions. Indeed, let h be an non-decreasing, exponentially bounded function on R. We introduce

(ρN )N∈N a sequence of mollifiers given by ρN (x) = Nρ(Nx) with ρ(x) = e
1

x2−1 I|x|<1. Finally, we set

hN (x) =
∫
h(x− y)ρN (y)dy. Since |h(x)| ≤ KeK|x| for some K > 0, we have

|hN (x)| ≤
∫
KeK|x−y|ρN (y)dy ≤ KeK|x|

∫ 1/N

0

NeK|y|e
1

N2y2−1 dy ≤ KeK(|x|+1).

Therefore (hN )N∈N is uniformly exponentially bounded. Furthermore, since h is non-decreasing, so is hN . It
means that h′N ≥ 0 and ∫

|h′N (x)|e− x
2

u dx =

∫
e−

x2

u dhN (x) =

∫
hN (x)

2x

u
e−

x2

u dx

≤ C√
u

∫
eK|x|−

x2

2u dx <∞,

implies that (hN )N∈N satisfies A(iii). It remains to show that (hN )N∈N satisfies A(i). Indeed, for any L > 0,
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we have ∫ L

−L
|hN (x)− h(x)|dx ≤

∫ L

−L
dx

∫
|h(x− y)− h(x)|ρN (y)dy

=

∫
|z|≤1

(∫ L

−L
|h(x−N−1z)− h(x)|dx

)
ρ(z)dz. (2.1)

Note that monotonic functions are continuous almost everywhere and therefore
∫ L
−L |h(x−N−1z)−h(x)|dx→

0 as N → ∞ for all z ∈ [−1, 1]. This fact together with Lebesgue dominated convergence theorem implies
that the last term of (2.1) tends to 0 as N → ∞. Thus hN → h in L1

loc(R). We conclude the proof of
Proposition 2.1.

Remark 2.2. This result implies that h = 1A ∈ A, where A is any finite union or intersection of intervals.
Also any finite linear combination of indicator functions is an element of A.

Throughout this paper, we always suppose that the following assumption holds.
Assumption (H): f has two derivatives and its second derivative is bounded. b ∈ C3

b (R), σ ∈ C4
b (R) and

σ(x) ≥ σ0 > 0 for all x ∈ R.
Our main results are:

Theorem 2.3 (Strong rates). Suppose (H). Then for any p ≥ 1, there exists a positive constant C such that
the following upper bounds for the strong error of approximation are valid.

(i) Let h ∈ A. Then

E

[∣∣∣ ∫ T

0

h(Xs)ds−
∫ T

0

h(Xηn(s))ds
∣∣∣2p] ≤ C

np+
1
2

.

(ii) Let h ∈ Ĉαexp(R) for some α ∈ (0, 1]. Then

E

[∣∣∣ ∫ T

0

h(Xs)ds−
∫ T

0

h(Xηn(s))ds
∣∣∣2p] ≤ {C log2p(n)

n2p , if α = 1;
C

n(1+α)p , if α ∈ (0, 1).

Theorem 2.4 (Weak rates). Suppose (H) and that h ∈ A. Then there exists a positive constant C such that∣∣∣∣∣E[f(
∫ T

0

h(Xs)ds
)]
− E

[
f
(∫ T

0

h(Xηn(s))ds
)]∣∣∣∣∣ ≤ C log(n)

n
.

Remark 2.5.

(i) The strong rate in Theorem 2.3(i) is optimal as it can be verified in the case that b = 0 and σ = 1(see
Proposition 2.3 in [16]). Similarly, the weak rate in Theorem 2.4 is optimal up to the factor log(n) in the
uniformly elliptic case (see e.g. [10] or [13]).

(ii) When α = 1 in Theorem 2.3, the strong approximation error is of order 1, i.e,∥∥∥∫ T

0

h(Xs)ds−
∫ T

0

h(Xηn(s))ds
∥∥∥
L2p(P)

≤ C log(n)

n
.

This result is compatible with the result of Theorem 1.1 in [12].

(iii) A − Ĉαexp(R) 6= ∅ and Ĉαexp(R) − A 6= ∅ for any α ∈ (0, 1). However, note that h(x) := sin(exp(x3)) ∈
C1

exp(R) but h /∈ A.

(iv) The L2(P) (p = 1) bound of the strong error estimate in Theorem 2.3 (i) for h ∈ A is larger than the
estimate in Theorem 2.3 (ii) for h ∈ Ĉαexp(R) iff α > 1

2 . On the other hand, if we consider the general

Lp(P) norms, the strong rate of convergence estimate for functions h ∈ Ĉαexp(R) and h ∈ A are 1+α
2 and 1

2
as p→∞, respectively. It means that the bound of the former case is smaller than the one of the latter case
when we consider higher order moments.
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Finally, we present some applications about the strong and weak approximation for the local time of X
which is defined as

Lt(x) = lim
δ→0

1

2δ

∫ t

0

I|Xs−x|≤δds.

Denote φε(x) = 1√
2πε

e−x
2/2ε for ε > 0. We have

Theorem 2.6. There exists a constant C > 0 such that

E

(LT (0)−
∫ T

0

φ 1
n

(Xηn(s))ds

)2
 ≤ C log(n)√

n
, (2.2)

∣∣∣E[LT (0)−
∫ T

0

φ 1
n

(Xηn(s))ds
]∣∣∣ ≤ C log(n)√

n
. (2.3)

Moreover, if x0 6= 0 then ∣∣∣E[LT (0)−
∫ T

0

φ 1
n

(Xηn(s))ds
]∣∣∣ ≤ C log(n)

n|x0|
. (2.4)

Remark 2.7. (i) The estimate (2.2) can be used to show the statistical consistence of the statistic
∫ T
0
φ 1
n

(Xηn(s))ds

for the estimation of the local time LT (0). On the other hand, it has been shown in [11] that the process

n
1
4

(
Lt(0)−

∫ t
0
φ 1
n

(Xηn(s))ds
)

converges stably in law to some non-degenerate process. This implies that

the strong rate obtained in (2.2) is optimal up to the log(n) term.

(ii) Estimates (2.3) and (2.4) give the rates of weak approximation for E[f(LT (0))] when f(x) = x. The
rate in (2.3) is almost optimal since one can easily verify that when X is a standard Brownian motion
starting at 0 (i.e. b = x0 = 0, σ = 1) then

E
[
LT (0)−

∫ T

0

φ 1
n

(Xηn(s))ds
]

=

√
T√
2π

(
2−

n∑
i=1

1√
in

)
≥
√
T√

2πn
.

Following the same method of proof as the one presented here, we may obtain the same rates in (2.3)
and (2.4) when f is any polynomial function. However, the problem of estimating the rate of weak
approximation for general function f is still open.

(iii) The rate in (2.4) is better than (2.3) because in the particular case that the starting point of X is zero
then the crossings of X at smaller times around zero increase significantly and therefore the approxi-
mation method deteriorates.

3 Proofs

We start with the following observation: we set S(x) =
∫ x
0

1
σ(y)dy and Yt = S(Xt). That is, using the standard

Lamperti transform (see [14]), one deduces from Itô formula that

dYt = b̂(Yt)dt+ dWt, 0 ≤ t ≤ T, (3.1)

where b̂(x) = b̃(S−1(x)) with b̃ = b
σ −

1
2σ
′ and S−1 denotes the inverse function of S. It is straightforward to

verify that if b and σ satisfy assumption (H) then b̂ ∈ C3
b (R) and S has bounded derivatives up to order 4.

Moreover, we have the following result.

Proposition 3.1. Assume (H).

1. If h ∈ A then h ◦ S−1 ∈ A.

2. If h is α-Hölder continuous then h ◦ S−1 is also α-Hölder continuous.

Therefore, it is enough to prove Theorems 2.3 and 2.4 for the case σ = 1. In the case of local times a
similar reduction will be applied.
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Proof of Proposition 3.1. The desired results follow from the fact that both S, S−1 are increasing differentiable
functions and that there exist two positive constants K1, K2 such that K1|x| ≤ |ϕ(x)| ≤ K2|x| for ϕ = S, S−1

and any x ∈ R.

This proposition reduces the proof of Theorem 2.3 to the proof of the same statements where h and X
are replaced by h ◦ S−1 and Y .

3.1 Malliavin Calculus tools

We refer the reader to [17] for an introduction of Malliavin calculus tools and related definitions and notations.
Let X be the solution of the sde

Xt = x0 +

∫ t

0

b(Xs)ds+Wt, (3.2)

where W is a one dimensional standard Wiener process and b ∈ C3
b (R).

1. Es = exp
( ∫ s

0
b′(Xu)du

)
. Since b ∈ C2

b (R) then we have that Es + E−1s ≤ C for a positive constant C

and all (s, ω) ∈ [0, T ]× Ω. Furthermore, we have that dEs = b′(Xs)Esds.

2. For any t > u > 0 and ϕ ∈ C1, the Malliavin derivative of ϕ(Xt) is given by

Du(ϕ(Xt)) = ϕ′(Xt)EtE
−1
u .

In particular, due to the previous item and the hypothesis (H) there exists a positive constant C such
that Dub(Xt) ≤ C for all u ≤ t and any ω ∈ Ω.

3. Pt(A) = P(A|Ft) and Et[F ] ≡ E[F |Ft]. Conditional Lp-norms are denoted by

‖F‖pr,n,p := Er

[
|F |p +

n∑
k=1

‖DkF‖p
L2([r,T ]k)

]
.

When the context is clear, we simplify the notation in the case that n = 0 by denoting ‖ ·‖r,p ≡ ‖·‖r,0,p

4. Conditional duality formula:

Et

[∫ t+h

t

DsFusds

]
= Et [Fδt,t+h(u)] , (3.3)

where δu,t is Skorohod integral in the time interval [u, t].

5. Some properties of the Skorohod integral: for any random variable F and a random process u

δ(Fu) = Fδ(u)−
∫ T

0

(DtF )utdt

as long as both sides of the equation make sense in L2(P). Furthermore, if u is an adapted process then

δ(u) =
∫ T
0
utdWt.

6. We will repeatedly use the following integration by parts (IBP) argument:
Let Zk, k ≤ 3, be Ft-measurable random variables satisfying Er[|Dk

αZk|p] ≤ C(k, p) for some posi-
tive deterministic constant C(k, p) and for any multi-index α = (α1, ..., αk) ∈ [r, t]k (Dk

α denotes the
Malliavin k-th order derivative at (α1, ..., αk)). Then we have

Duf(Xt) = f ′(Xt)EtE
−1
u or f ′(Xt)Z1 = Duf(Xt)Z1EuE

−1
t

for t > u > 0. Furthermore, we have the following integration by parts formula

Er[f ′(Xt)Z1] =
1

t− r
Er
[∫ t

r

Duf(Xt)Z1EuE
−1
t du

]
=

1

t− r
Er
[
f(Xt)δr,t

(
Z1E.E

−1
t

)]
= Er[f(Xt)Hr,t(Xt, Z1)], (3.4)
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withHr,t(Xt, Z1) = 1
t−r δr,t

(
Z1E.E

−1
t

)
. For higher order derivatives, we define inductivelyHk

r,t(Xt, Z
k) =

Hk−1
r,t (Xt, ZkHr,t(Xt, Z

k−1)) for k = 2, 3, with H1
r,t(Xt, ·) = Hr,t(Xt, ·) and Zk = (Z1, . . . , Zk), we have

the following properties:

Er
[
Hk
r,t(Xt, Z

k)
]

= 0, (3.5)

‖Hk
r,t(Xt, Z

k)‖r,q ≤
C(k, p)

(t− r) k2
. (3.6)

These estimates are obtained by applying the norm properties in Propositions 1.5.6 – 1.5.7 in [17]
together with the explicit expressions above.

Remark 3.2. The fact that coefficients are bounded allows us to obtain the property that E is bounded
(property 1.) and also the Gaussian bounds on the density (see (3.6) and (4.1)). In fact, the proofs use
strongly these two facts although one can find other ways to deal with the expressions related to E using the
Malliavin calculus integration by parts formulas even in the case that E is only bounded in Lp(P). On the
other hand, the fact that the density estimates are Gaussian is extremely important and it becomes the key
element which forces us to impose the boundedness assumptions on the coefficients of the sde.

A first result related with our problem is the following particular case of weak rate of convergence.

Lemma 3.3 (Theorem 2.5 [10]). Suppose that h is exponentially bounded. Then∣∣∣∣∣E
[∫ T

0

h(Xs)ds−
∫ T

0

h(Xηn(s))ds

]∣∣∣∣∣ ≤ C log(n)

n
.

Although the result in [10] uses the Euler scheme as approximating method, the proof is much simpler in
our case and it can also be carried out in the fashion described in [10]1.

3.2 Preliminary estimations based on the IBP formula

Recall that throughout this section, we suppose that σ = 1.

Lemma 3.4. Suppose that ζ ∈ C2
exp(R). Then there exists a constant C depending on X such that the

estimate

|Er [(ζ ′b)′(Xv)Ev] | ≤
C

v − r
‖ζ(Xv)− Er[ζ(Xv)]‖r,2 ≤

C

v − r
‖ζ(Xv)‖r,2

holds for any 0 ≤ r ≤ v ≤ T . Furthermore if |ζ(x)| ≤ KeK|x| for some K > 0, then there exists a constant
C depending on K and the coefficients of X such that ‖ζ(Xv)‖r,2 ≤ CeK|Xr|.

Proof. For the first part, it follows from the IBP formula (3.4), the definition of C2
exp(R) and the estimates

in (3.6) with Z1 = Ev and Z2 = b(Xv) so that

|Er [(ζ ′b)′(Xv)Ev]| = |Er [ζ ′b(Xv)Hr,v(Xv,Ev)]|
= |Er [ζ(Xv)Hr,v(Xv, b(Xv)Hr,v(Xv,Ev))]|
= |Er [(ζ(Xv)− Er(ζ(Xv)))Hr,v(Xv, b(Xv)Hr,v(Xv,Ev))]|,

where we have used, in the last equality, the zero-mean property (3.5) of H. Then, by using the moment
estimate (3.6), we get

|Er [(ζ ′b)′(Xv)Ev]| ≤ C‖ζ(Xv)− Er[ζ(Xv)]‖r,2‖H2
r,v(Xv, Z

2)‖r,2 ≤
C

v − r
‖ζ(Xv)− Er[ζ(Xv)]‖r,2.

Furthermore, if |ζ(x)| ≤ KeK|x| for some K > 0 then the fact that ζ(Xv) ≤ KeK|Xv−Xr|eK|Xr| together with
(4.1) gives the desired property.

1In fact, [10] claims that the error is bounded by C
n

. However the proof given in [10] only gives the slightly bigger bound
C log(n)

n
. The authors provided us with an alternative proof which gives the correct bound. For our results, either bound give

the same final rate.
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Lemma 3.5. (i) Assume that ζ ∈ C1
exp(R). For any v > r ≥ 0, there exists a constant C such that

Er
[
(ζ(Xv)− Er[ζ(Xv)])

2
]
≤ C

(∫
|ζ ′(z)| exp

(
− C(z −Xr)

2

v − r

)
dz
)2
.

(ii) Assume that ζ ∈ Ĉαexp(R) for some α ∈ (0, 1]. Then there exists a constant C (depending on X and α)
such that

Er
[
(ζ(Xv)− Er[ζ(Xv)])

2
]
≤ C(v − r)α.

The nature of the above estimates (i) and (ii) are the same. In the above statements, this is not so explicit
because the derivative of ζ is not necessarily bounded. Later, we will see that after taking expectations this
term is of order

√
v − r. The same remark can be made about Lemma 3.6.

Proof. (i) Fix r < v, and for each s ∈ [r, v], we denote

u(s, x) = E[ζ(Xv)|Xs = x].

Then u ∈ C1,2([0, v] × R,R), u(v,Xv) = ζ(Xv) and u(r,Xr) = Er[ζ(Xv)]. Furthermore, since ζ(Xv) is
integrable and u(s,Xs) = E[ζ(Xv)|Xs], (u(s,Xs))s∈[r,v] is a martingale. Hence, it follows from Itô’s formula
that

ζ(Xv)− Er[ζ(Xv)] = u(v,Xv)− u(r,Xr) =

∫ v

r

∂xu(s,Xs)dWs.

Therefore,

Er
[
|ζ(Xv)− Er[ζ(Xv)]|2

]
= Er

[∫ v

r

|∂xu(s,Xs)|2ds
]
. (3.7)

Then we have (
Er[|∂xu(s,Xs)|2]

)1/2
=
(
Er[|Es[ζ ′(Xv)EvE

−1
s ]|2]

)1/2
≤ C

∫ (
Er
[( |ζ ′(z)|√

v − s
exp

(
− C(z −Xs)

2

v − s

))2])1/2

dz

=
C√
v − s

∫
|ζ ′(z)|

(
Er
[
exp

(
−C(z −Xs)

2

v − s

)])1/2
dz.

In the above, we have used that

• EvE
−1
s ≤ C

• The Gaussian bound on the transition density of X in Lemma 4.1.

• The generalized Minkowski inequality.∥∥∥∥∫ F (x1, x2)µ1(dx1)

∥∥∥∥
Lq(µ2)

≤
∫
‖F (x1, x2)‖Lq(µ2)

µ1(dx1) ; q ≥ 1, (3.8)

applied with µ1(dx1) = dx1, µ2(dx2) = Pr(dx2), F (x1, x2) = ζ′(x1)√
v−s exp

(
−C(z−Xs(x2))

2

v−s

)
and q = 2.

Then, we get using Lemma 4.2

Er[|∂xu(s,Xs)|2] ≤ C√
(v − s)(v − r)

(∫
|ζ ′(z)| exp

(
− C(z −Xr)

2

v − r

)
dz
)2
. (3.9)

Plugging (3.9) into (3.7) we obtain

Er[|ζ(Xv)− Er[ζ(Xv)]|2] ≤
∫ v

r

C√
(v − s)(v − r)

(∫
|ζ ′(z)| exp

(
− C(z −Xr)

2

v − r

)
dz
)2
ds

≤ C
(∫
|ζ ′(z)| exp

(
− C(z −Xr)

2

v − r

)
dz
)2
,
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which completes the proof of Lemma 3.5-(i).
(ii) If we suppose that ζ ∈ Ĉαexp(R) for some α ∈ (0, 1], then

Er
[
(ζ(Xv)− Er[ζ(Xv)])

2
]
≤ Er

[
(ζ(Xv)− ζ(Xr))

2
]

≤ CEr
[
|Xv −Xr|2α

]
.

Writing Xv −Xr =
∫ v
r
b(Xt)dt+

∫ v
r
σ(Xt)dWt and using the boundedness of b and σ yields

Er
[
(ζ(Xv)− Er[ζ(Xv)])

2
]
≤ C(v − r)α.

Lemma 3.6. (i) Assume that ζ ∈ C3
exp(R). For u ∈ (0, ηn(s)), it holds that∣∣∣Eu [ζ ′(Xs)Es − ζ ′(Xηn(s))Eηn(s)
] ∣∣∣ ≤ C ∫ s

ηn(s)

(
‖ζ(Xv)‖u,2
v − u

+
1

(v − u)
3
2

∫
|ζ ′(z)| exp

(
− C(z −Xu)2

v − u

)
dz

)
dv.

(ii) Furthermore, assume that ζ ∈ C3
exp(R) ∩ Ĉαexp(R) for some α ∈ (0, 1]. Then, for u ∈ (0, ηn(s))∣∣∣Eu [ζ ′(Xs)Es − ζ ′(Xηn(s))Eηn(s)

] ∣∣∣ ≤ C ∫ s

ηn(s)

(v − u)
α−3
2 dv.

Proof. (i) Using Itô’s formula, we have

Eu
[
ζ ′(Xs)Es − ζ ′(Xηn(s))Eηn(s)

]
=

∫ s

ηn(s)

Eu
[
(ζ ′b)′(Xv)Ev +

1

2
ζ ′′′(Xv)Ev

]
dv.

Then Lemma 3.4 yields ∣∣∣Eu [(ζ ′b)′(Xv)Ev]
∣∣∣ ≤ C

v − u
‖ζ(Xv)‖u,2.

For 0 ≤ r ≤ v ≤ T , we have for Z1 = Ev and Z2 = Z3 = 1 in (3.5) and (3.6) together with Lemma 3.5

|Eu[ζ ′′′(Xv)Ev]| = |Eu[ζ(Xv)H
3
u,v(Xv, Z

3)]|
= |Eu[(ζ(Xv)− Eu[ζ(Xv)])H

3
u,v(Xv, Z

3)]|
≤ ‖ζ(Xv)− Eu[ζ(Xv)]‖u,2‖H3

u,v(Xv, Z
3)‖u,2

≤ C

(v − u)
3
2

∫
|ζ ′(z)| exp

(
− C(z −Xu)2

v − u

)
dz.

(ii) The estimate when ζ ∈ C3
exp(R) ∩ Ĉαexp(R) readily follows from the above proof and Lemma 3.5-(ii).

We are now in a position to prove all the results mentioned in Section 2. Recall that due to Proposition
3.1, we may assume without loss of generality that σ = 1 in the proof of Theorems 2.3 and 2.4.

3.3 Proof of Theorem 2.3(i)

As h ∈ A, there exists a sequence of smooth functions {hN}N∈N converging to h with the properties stated
in the definition of the space A. Define

Sn =

∫ T

0

(h(Xs)− h(Xηn(s)))ds,

Sn,N =

∫ T

0

(hN (Xs)− hN (Xηn(s)))ds.

Before continuing, we provide as a guide a brief description of the line of proof. We will first prove the
convergence of the regularizing sequence E|Sn,N |2p to E|Sn|2p.
Then, we write Sn,N as the sum of the centered term (Sn,N − E[Sn,N ]) and the expectation E[Sn,N ]. The

9



latter is easier to handle due to Lemma 3.3. The former can be written, thanks to the Clark-Ocone formula,
as an Itô integral of Eu[DuSn,N ].

This term will be a time integral of the conditional expectation of (h′N (Xs) − h′N (Xηn(s))). We control
this term (uniformly in N) through conditional IBP thanks to Lemma 3.6.

In other words, the way to understand and solve this problem is to observe that the derivatives of hN
explode and that the conditional expectation Eu (combined with the time integral) will play the role of
smoothing DuSn,N uniformly in N finally controlling the error.

In particular, we have to estimate multiple time-integrals of negative powers of the time-variables, which
finally will give the rate of convergence.
Now, let us go into the details of the proof. We first show that

lim
N→∞

E[|Sn,N |2p] = E[|Sn|2p]. (3.10)

Indeed, we have using Hölder’s inequality, Fubini’s theorem and (4.1)

E

[∣∣∣ ∫ T

0

(hN (Xs)− h(Xs))ds
∣∣∣2p] ≤ C ∫ T

0

E
[
|hN (Xs)− h(Xs)|2p

]
ds

≤ C
∫ T

0

ds

∫
|hN (x)− h(x)|2p e

−Cx2s
√
s
dx.

Recall that as h ∈ A, then for any ε > 0 there exists a compact set K, such that∫ T

0

ds

∫
Kc
|hN (x)− h(x)|2p e

−Cx2s
√
s
dx ≤ C

∫ T

0

ds

∫
Kc
e2pK2|x| e

−Cx2s
√
s
dx < ε.

Therefore, since hN → h in L1
loc(R), applying Lebesgue dominated convergence theorem, we get

lim
N→∞

E

[∣∣∣ ∫ T

0

(hN (Xs)− h(Xs))ds
∣∣∣2p] = 0.

A similar argument shows

lim
N→∞

E

[∣∣∣ ∫ T

0

(hN (Xηn(s))− h(Xηn(s)))ds
∣∣∣2p] = 0.

Therefore limN→∞ E
[
|Sn,N − Sn|2p

]
= 0 and therefore the triangle inequality for Lp(P) gives the convergence

of 2p moments.
Next, it follows from Clark-Ocone formula that

E
[
|Sn,N − E[Sn,N ]|2p

]
= E

[∣∣∣ ∫ T

0

Eu[DuSn,N ]dWu

∣∣∣2p] ≤ CE[∣∣∣ ∫ T

0

|Eu[DuSn,N ]|2du
∣∣∣p] , (3.11)

where the last inequality follows from the BDG (Burkholder-Davis-Gundy) inequality. Using the chain rule
property of the Malliavin derivative and the fact that E and E−1 are uniformly bounded, we have

E
[
|Sn,N − E[Sn,N ]|2p

]
= E

[∣∣∣∣∣
∫ T

0

(
E−1u Eu

[∫ T

0

h′N (Xs)EsIs≥u − h′N (Xηn(s))Eηn(s)Iηn(s)≥uds

])2
du

∣∣∣∣∣
p]

≤ Cnp−1(T 1
n,N + T 2

n,N ),

where

T 1
n,N =

n−1∑
i=0

E

[∣∣∣∣∣
∫ ti+1

ti

(∫ ti+1

u

Eu [|h′N (Xs)|] ds
)2

du

∣∣∣∣∣
p]
,

T 2
n,N =

n−1∑
i=0

E

∣∣∣∣∣∣
∫ ti+1

ti

(∫ T

ti+1

Eu
[
h′N (Xs)Es − h′N (Xηn(s))Eηn(s)

]
ds

)2

du

∣∣∣∣∣∣
p .
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Here we have used that [0, T ) = ∪n−1i=0 [ti, ti+1) and Hölder’s inequality for sums. We will show that there
exists a positive constant independent of N and n such that

T 1
n,N + T 2

n,N ≤ Cn−2p+1/2.

Therefore the proof finishes by noting that

E[|Sn,N |2p] ≤ C
(
|E[Sn,N ]|2p + E

[
|Sn,N − E[Sn,N ]|2p

])
.

Therefore we finish using Lemma 3.3 to estimate E[Sn,N ] in (3.11) and noting that limN→∞ E[|Sn,N |2p] =
E[|Sn|2p] which gives the estimate for E[|Sn|2p].

3.3.1 Estimate for T 1
n,N

First we write

Eu[|h′N (Xs)|] =

∫
|h′N (x)|ps−u(Xu, x)dx

≤ C
∫
|h′N (x)| 1√

s− u
exp

(
− C(x−Xu)2

s− u

)
dx.

This estimate together with Hölder and generalized Minkowski inequality (3.8) with µ1(ds, dx) = dsdx,
µ2 = P and q = 2p yields

T 1
n,N ≤ C

n−1∑
i=0

E

[∣∣∣∣∫ ti+1

ti

du
(∫ ti+1

u

ds

∫
|h′N (x)| 1√

s− u
exp

(
− C(x−Xu)2

s− u

)
dx
)2∣∣∣∣p

]

≤ Cn1−p
n−1∑
i=0

∫ ti+1

ti

E

[∣∣∣∣∫ ti+1

u

ds

∫
|h′N (x)| 1√

s− u
exp

(
− C(x−Xu)2

s− u

)
dx

∣∣∣∣2p
]
du

≤ Cn1−p
n−1∑
i=0

∫ ti+1

ti

{∫ ti+1

u

ds

∫ (
E
[∣∣∣h′N (x)

1√
s− u

exp

(
−C(x−Xu)2

s− u

) ∣∣∣2p])1/2pdx}2p

du

= Cn1−p
n−1∑
i=0

∫ ti+1

ti

{∫ ti+1

u

ds

∫
|h′N (x)| 1√

s− u

(
E
[
exp

(
−2pC(x−Xu)2

s− u

)])1/2p

dx
}2p

du.

Since h satisfies A(iii), we obtain after using (4.2),

T 1
n,N ≤ CK(h)2pn1−p

n−1∑
i=0

∫ ti+1

ti

(∫ ti+1

u

(s− u)(1−2p)/4ps−1/4pds
)2p

du

≤ CK(h)2pn−2p+1/2.

In this last estimate, we have used in the above integral that s−1/4p ≤ u−1/4p, direct integration and then
(ti − u) ≤ T

n .

3.3.2 Estimate for T 2
n,N

Thanks to Lemma 3.6(i), we have T 2
n,N ≤ C(Un,N,1 + Un,N,2) where

Un,N,1 =

n−1∑
i=0

E


∣∣∣∣∣∣∣
∫ ti+1

ti

 n−1∑
j=i+1

∫ tj+1

tj

ds

∫ s

tj

‖hN (Xv)‖u,2
v − u

dv

2

du

∣∣∣∣∣∣∣
p ,

Un,N,2 =

n−1∑
i=0

E


∣∣∣∣∣∣∣
∫ ti+1

ti

 n−1∑
j=i+1

∫ tj+1

tj

ds

∫ s

tj

1

(v − u)
3
2

∫
|h′N (z)| exp

(
− C(z −Xu)2

v − u

)
dzdv

2

du

∣∣∣∣∣∣∣
p .

(3.12)
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For the first term, using Fubini’s theorem, (tj+1 − v) ≤ T
n and Hölder’s inequality, we estimate

Un,N,1 =

n−1∑
i=0

E

∣∣∣∣∣∣
∫ ti+1

ti

( n−1∑
j=i+1

∫ tj+1

tj

(tj+1 − v)‖hN (Xv)‖u,2
v − u

dv
)2
du

∣∣∣∣∣∣
p

≤ Cn−2p
n−1∑
i=0

E

[∣∣∣∣∣
∫ ti+1

ti

(∫ T

ti+1

‖hN (Xv)‖u,2
v − u

dv
)2
du

∣∣∣∣∣
p]

≤ Cn1−3p
n−1∑
i=0

∫ ti+1

ti

E

[(∫ T

ti+1

‖hN (Xv)‖u,2
v − u

dv
)2p]

du.

Using generalized Minkowski inequality (3.8) with µ1(dv) = dv, µ2 = P and q = 2p, we get

Un,N,1 ≤ Cn1−3p
n−1∑
i=0

∫ ti+1

ti

{∫ T

ti+1

(
E
[(‖hN (Xv)‖u,2

v − u

)2p])1/2p

dv

}2p

du.

From Assumption A(ii) and Lemma 4.1 we deduce that sup0≤u≤v≤T supN E[‖hN (Xv)‖2pu,2] ≤ C supu∈[0,T ] E[e2pK2|Xu|] <
∞. Then Lemma 4.5(i) gives

Un,N,1 ≤ Cn1−3p
n−1∑
i=0

∫ ti+1

ti

(
log

T − u
ti+1 − u

)2p
du ≤ C log2p(n)

n3p−1
. (3.13)

We now turn to the evaluation of Un,N,2. From (3.12), integrating with respect to s and using that
tj+1 − v ≤ T

n , we obtain

Un,N,2 ≤ Cn−2p
n−1∑
i=0

E

∣∣∣∣∣∣
∫ ti+1

ti

(∫ T

ti+1

dv

(v − u)
3
2

∫
|h′N (z)| exp

(
− C(z −Xu)2

v − u

)
dz

)2

du

∣∣∣∣∣∣
p .

Applying generalized Minkowski inequality (3.8) three times (with different definitions for µ1, µ2, q and F )
and Lemma 4.2, we have∥∥∥∥∥∥

∫ ti+1

ti

(∫ T

ti+1

dv

(v − u)
3
2

∫
|h′N (z)| exp

(
− C(z −Xu)2

v − u

)
dz

)2

du

∥∥∥∥∥∥
Lp(P)

≤
∫ ti+1

ti

E

∣∣∣∣∣
∫ T

ti+1

dv

(v − u)
3
2

∫
|h′N (z)| exp

(
− C(z −Xu)2

v − u

)
dz

∣∣∣∣∣
2p
 1

p

du

≤
∫ ti+1

ti

∫ T

ti+1

(
E

[∣∣∣∣ 1

(v − u)
3
2

∫
|h′N (z)| exp

(
− C(z −Xu)2

v − u

)
dz

∣∣∣∣2p
]) 1

2p

dv

2

du

=

∫ ti+1

ti

(∫ T

ti+1

1

(v − u)
3
2

∫
|h′N (z)|

(
E
[
exp

(
− 2pC(z −Xu)2

v − u

)]) 1
2p

dzdv

)2

du

≤C
∫ ti+1

ti

(∫ T

ti+1

(v − u)
1−6p
4p v−

1
4p

∫
|h′N (z)| exp

(
− Cz2

v

)
dzdv

)2

du

≤CK(h)2
∫ ti+1

ti

(∫ T

ti+1

(v − u)
1−6p
4p t

− 1
4p

i+1 dv

)2

du.

where the last inequality follows from the property A(iii). A direct computation shows

∫ ti+1

ti

(∫ T

ti+1

(v − u)
1−6p
4p t

− 1
4p

i+1 dv

)2

du ≤ C
∫ ti+1

ti

(ti+1 − u)
1−2p
2p t

− 1
2p

i+1 du = Cn−
1
2p t
− 1

2p

i+1 .
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Therefore, we obtain

Un,N,2 ≤ CK(h)2pn−2p
n−1∑
i=0

t
−1/2
i+1 n−1/2 ≤ CK(h)2pn−2p+1/2

∫ T

0

dt√
t
.

This concludes the proof of Theorem 2.3. 2

3.4 Proof of Theorem 2.3(ii)

The structure of the proof of Theorem 2.3(ii) is similar to that of Theorem 2.3(i) except that we will use
Lemma 3.5(ii) and Lemma 3.6(ii) instead of Lemma 3.5(i) and Lemma 3.6(i).

For each N > 0, denote

hN (x) =

∫
h(y)

N√
2π

exp
(
− N2(x− y)2

2

)
dy =

∫
h(x+

z

N
)

1√
2π
e−

z2

2 dz.

We note that for fixed N , hN ∈ Ckexp(R) for any k ∈ N and if h ∈ Ĉαexp(R) then

|hN (x)− hN (y)| ≤
∫ ∣∣∣h(x+

z

N

)
− h
(
y +

z

N

)∣∣∣e−z2/2√
2π

dz

≤ Ch
∫
|x− y|α e

−z2/2
√

2π
dz = Ch|x− y|α.

Proof. We use similar ideas as in the proof of Theorem 2.3(i) and therefore we also borrow the notations
from that proof. First, note that

|hN (x)− h(x)| =
∣∣∣ ∫ (h(x+N−1z)− h(x))

1√
2π
e−

z2

2 dz
∣∣∣ ≤ CN−α.

Therefore, we have

E
[
|Sn − Sn,N |2p

]
= E

[(∫ T

0

(hN (Bs)− hN (Bηn(s))− h(Bs) + h(Bηn(s)))ds
)2p]

≤ CE

[(∫ T

0

(hN (Bs)− h(Bs))ds
)2p]

+ CE

[(∫ T

0

(hN (Bηn(s))− h(Bηn(s)))ds
)2p]

≤ CN−2pα.

Then as in the proof of Theorem 2.3(i), we have

lim
N→∞

E[|Sn,N |2p] = E[|Sn|2p]. (3.14)

Next, in a similar way as in the proof of Theorem 2.3(i) we have that

E
[
|Sn,N − E[Sn,N ]|2p

]
≤ Cnp−1(T̂ 1

n,N + T̂ 2
n,N ),

where

T̂ 1
n,N =

n−1∑
i=0

E

[∣∣∣∣∣
∫ ti+1

ti

(∫ ti+1

u

Eu [h′N (Xs)Es] ds

)2

du

∣∣∣∣∣
p]
,

T̂ 2
n,N =

n−1∑
i=0

E

∣∣∣∣∣∣
∫ ti+1

ti

(∫ T

ti+1

Eu
[
h′N (Xs)Es − h′N (Xηn(s))Eηn(s)

]
ds

)2

du

∣∣∣∣∣∣
p .

We remark here that h does not necessarily belong to A. Instead, the upper estimate will be obtained using
Lemma 3.5(ii) and Lemma 3.6(ii).
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a) Here, we estimate T̂ 1
n,N . From the proof of Lemma 3.4, Lemma 3.5(ii) and the above estimate, the

following inequalities are straighforward:

|Eu [h′N (Xs)Es] | ≤
C

(s− u)
1
2

‖hN (Xs)− Eu(hN (Xs))‖u,2 ≤ C(s− u)
α−1
2 .

Thus

T̂ 1
n,N ≤ C

n−1∑
i=0

∣∣∣ ∫ ti+1

ti

(∫ ti+1

u

(s− u)
α−1
2 ds

)2
du
∣∣∣p ≤ Cn1−p(2+α).

b) Now, we estimate T̂ 2
n,N . Thanks to Lemma 3.6(ii), we have integrating with respect to s,

T̂ 2
n,N ≤ C

n−1∑
i=0

∣∣∣ ∫ ti+1

ti

( n−1∑
j=i+1

∫ tj+1

tj

ds

∫ s

tj

(v − u)
α−3
2 dv

)2
du
∣∣∣p

≤ Cn−2p
n−1∑
i=0

∣∣∣ ∫ ti+1

ti

(∫ T

ti+1

(v − u)
α−3
2 dv

)2
du
∣∣∣p.

i) If α ∈ (0, 1), we have

T̂ 2
n,N ≤ Cn−2p

n−1∑
i=0

∣∣∣ ∫ ti+1

ti

(ti+1 − u)α−1du
∣∣∣p ≤ Cn1−p(2+α).

ii) If α = 1, we have by Lemma 4.5(i)

T̂ 2
n,N ≤ Cn−2p

n−1∑
i=0

∣∣∣ ∫ ti+1

ti

(
log

(
T − u
ti+1 − u

))2
du
∣∣∣p ≤ C log2p(n)

n3p−1
.

Therefore,

E[|Sn,N − E(Sn,N )|2p] ≤

{
C log2p(n)

n2p if α = 1
C

np(α+1) if α ∈ (0, 1),

where C is a constant which is independent of the values of N and n. This fact together with Lemma 3.3
and equation (3.14) yields the desired result.

3.5 Proof of Theorem 2.4

Once the hard work of proving the strong rate of convergence has been achieved, we use this result and the
method of proof in order to obtain the weak error of convergence. First, we apply a Taylor expansion of order
two and then we apply the strong rate result on the second order term. For the first order term, we have
to proceed as before using Clark-Ocone’s formula. This will lead to a double explosion terms (see (3.16)) as
the derivatives of hN will appear twice. But time integrals and iterated conditional expectations appear as
in the proof of Theorem 2.3(i) except that now they appear twice. So that a similar argument gives the rate
of convergence.

Using Taylor’s expansion, we define the bounded random variable A2

A2 =

{
f(I)−f(In)−f ′(I)(I−In)

(I−In)2 if I 6= In

f ′′(I) if I = In.

where I =
∫ T
0
h(Xs)ds, In =

∫ T
0
h(Xηn(s))ds. Then we have

E
[
f
( ∫ T

0

h(Xs)ds
)]
− E

[
f
( ∫ T

0

h(Xηn(s))ds
)]

= E
[
f ′
( ∫ T

0

h(Xs)ds
) ∫ T

0

(h(Xs)− h(Xηn(s)))ds
]

+ E

A2

(∫ T

0

(h(Xs)− h(Xηn(s)))ds

)2
 .
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Since A2 is bounded, then from Theorem 2.3(i), the second term is bounded as follows

∣∣∣E[A2

(∫ T

0

(h(Xs)− h(Xηn(s)))ds

)2 ]∣∣∣ ≤ CE
(∫ T

0

(h(Xs)− h(Xηn(s)))ds

)2


≤ Cn− 3
2 .

Since f ′′ is bounded, there is a constant C such that |f ′(x)| ≤ C(|x|+ 1) for all x ∈ R. Thus, for any β ≥ 1,

sup
N

E
[∣∣∣f ′(∫ T

0

hN (Xs)ds
)∣∣∣β] ≤ C sup

N
E
[∣∣∣ ∫ T

0

hN (Xs)ds
∣∣∣β]+ C ≤ C

∫ T

0

E[eK2β|Xs|]ds+ C <∞. (3.15)

This estimate is also valid for h instead of hN . Therefore, by following a similar argument as in the beginning
of the proof of Theorem 2.3(i), we obtain

E

[
f ′
( ∫ T

0

h(Xs)ds
) n−1∑
i=0

∫ ti+1

ti

(h(Xs)− h(Xηn(s)))ds

]

= lim
N→∞

E

[
f ′
( ∫ T

0

hN (Xs)ds
) n−1∑
i=0

∫ ti+1

ti

(hN (Xs)− hN (Xti))ds

]
.

Using Clark-Ocone formula, we write

E

[
f ′
( ∫ T

0

hN (Xs)ds
) n−1∑
i=0

∫ ti+1

ti

(hN (Xs)− hN (Xti))ds

]

= E

[
f ′
( ∫ T

0

hN (Xs)ds
) n−1∑
i=0

∫ ti+1

ti

E[hN (Xs)− hN (Xti)]ds

]

+ E

[
f ′
( ∫ T

0

hN (Xs)ds
)(n−1∑

i=0

∫ ti+1

ti

∫ s

0

Er[Dr(hN (Xs)− hN (Xti))]dWrds

)]
= Sn,N1 + Sn,N2 .

It follows from Lemma 3.3 and the estimate (3.15) that

lim
N→∞

|Sn,N1 | = O(n−1).

Using the chain rule for Malliavin derivatives, we write the second term as follows

Sn,N2 = E
[
f ′
( ∫ T

0

hN (Xs)ds
)( n−1∑

i=0

∫ ti+1

ti

∫ ti

0

Er
[
h′N (Xs)Es − h′N (Xti)Eti

]
E−1r dWrds

)]
+ E

[
f ′
( ∫ T

0

hN (Xs)ds
)( n−1∑

i=0

∫ ti+1

ti

∫ s

ti

Er[h′N (Xs)Es]E
−1
r dWrds

)]
= Sn,N2,a + Sn,N2,b .

We estimate first Sn,N2,a . It follows from interchanging integrals, Fubini’s theorem and the duality formula

(3.3) with F = f ′
(∫ T

0
hN (Xs)ds

)
and ur = Er [h′N (Xs)Es]E

−1
r that

Sn,N2,a =

n−1∑
i=0

∫ ti+1

ti

E
[
f ′
( ∫ T

0

hN (Xu)du
) ∫ ti

0

E−1r Er[h′N (Xs)Es − h′N (Xti)Eti ]dWr

]
ds

=

n−1∑
i=0

∫ ti+1

ti

E
[ ∫ ti

0

f ′′
( ∫ T

0

hN (Xu)du
) ∫ T

r

h′N (Xu)EuE
−2
r Er[h′N (Xs)Es − h′N (Xti)Eti ]dudr

]
ds.
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We deduce from the boundedness of E,E−1 and f ′′ that

|Sn,N2,a | ≤ C
n−1∑
i=0

∫ ti+1

ti

∫ ti

0

∫ T

r

E [|h′N (Xu)||Er [h′N (Xs)Es − h′N (Xti)Eti ] |] dudrds. (3.16)

It follows from Lemma 3.6(i) that

|Sn,N2,a | ≤ C
n−1∑
i=0

∫ ti+1

ti

∫ ti

0

∫ T

r

E
[
|h′N (Xu)|

∫ s

ti

‖hN (Xv)‖r,2
v − r

dv

]
dudrds

+

n−1∑
i=0

∫ ti+1

ti

∫ ti

0

∫ T

r

E
[
|h′N (Xu)|

∫ s

ti

dv

(v − r) 3
2

∫
|h′N (z)| exp

(
− C(z −Xr)

2

v − r

)
dz

]
dudrds

= Un,N1 + Un,N2 .

Now, for any u > r ≥ 0, consider

Er[|h′N (Xu)|] ≤ C
∫
|h′N (x)| 1√

u− r
exp

(
− C(x−Xr)

2

u− r

)
dx, (3.17)

and, using Lemma 3.4,

E
[
exp

(
− C(x−Xr)

2

u− r

)
‖hN (Xv)‖r,2

]
≤ CE

[
exp

(
− C(x−Xr)

2

u− r

)
exp(K|Xr|)

]
≤ C exp(K|x|)E

[
exp

(
− C(x−Xr)

2

u− r

)
exp(K|x−Xr|)

]
≤ C exp(K|x|)E

[
exp

(
− C(x−Xr)

2

u− r

)]
,

from which, and from inequalities (4.2) and (3.17), we get

E [|h′N (Xu)|‖hN (Xv)‖r,2] = E [Er [|h′N (Xu)] ‖hN (Xv)‖r,2]

≤ C
∫
|h′N (x)| exp(K|x|)

exp(−Cx
2

u )
√
u

dx ≤ C
∫
|h′N (x)|

exp(−Cx
2

u )
√
u

dx.

Then, we have, using A(iii) and Lemma 4.5(ii)

Un,N1 ≤ C
n−1∑
i=0

∫ ti+1

ti

∫ ti

0

∫ T

r

∫ s

ti

1

v − r

∫
|h′N (x)|

exp(−Cx
2

u )
√
u

dxdvdudrds ≤ CK(h)
log(n)

n
.

Next we evaluate Un,N2 . Applying (3.17) and Lemma 4.4 on [r, T ]2 with a1(v) = 1(ti ≤ v ≤ s)(v − r)− 3
2

and a2(u) = 1(r ≤ u ≤ T )(u− r)− 1
2 and A(iii), we get from Lemma 4.5(iii)

Un,N2 ≤ CK(h)2
n−1∑
i=0

∫ ti+1

ti

ds

∫ ti

0

dr

∫ T

r

du

∫ s

ti

(v − r)−1(u− r)− 1
2 v−

1
2 dv ≤ CK(h)2

log(n)

n
.

We estimate Sn,N2,b . Again, thanks to the duality formula (3.3), we have

Sn,N2,b =

n−1∑
i=0

∫ ti+1

ti

E
[
f ′
( ∫ T

0

hN (Xu)du
) ∫ s

ti

Er[h′N (Xs)EsE
−1
r ]dWr

]
ds

=

n−1∑
i=0

∫ ti+1

ti

E
[ ∫ s

ti

f ′′
( ∫ T

0

hN (Xu)du
) ∫ T

r

h′N (Xv)EvE
−1
r Er[h′N (Xs)EsE

−1
r ]dvdr

]
ds.

Thanks to the boundedness of f ′′ and Es, we have

|Sn,N2,b | ≤ C
n−1∑
i=0

∫ ti+1

ti

ds

∫ s

ti

dr

∫ T

r

E [|h′N (Xv)|Er[|h′N (Xs)|]] dv

= C

n−1∑
i=0

∫ ti+1

ti

ds

∫ s

ti

dr

∫ T

r

E [Er [|h′N (Xv)|]Er [|h′N (Xs)|]] dv.
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Using (3.17) and Lemma 4.4 on [r, T ]2 with a1(s) = 1(r ≤ s ≤ ti+1)(s − r)−
1
2 and a2(v) = 1(r ≤ v ≤

T )(v − r)− 1
2 and Lemma 4.5(iv), we have that

|Sn,N2,b | ≤ CK(h)2
n−1∑
i=0

∫ ti+1

ti

ds

∫ s

ti

dr

∫ T

r

1√
s(v − r)

dv ≤ CK(h)2

n
.

This concludes the proof of Theorem 2.4. 2

3.6 Proof of Theorem 2.6

The proof is divided into two parts. We first consider the error of the continuous approximation LT (0) ≈∫ T
0
φε(Xs)ds. The error of the discrete approximation

∫ T
0
φε(Xs)ds ≈

∫ T
0
φε(Xηn(s))ds is considered in the

second part.
For the moment, we deal with the case of general σ, although in Lemma 3.9 we will make the assumption

that σ = 1. Later, we will see that after applying Lamperti’s transformation we can reduce our study to this
case.

Lemma 3.7. There exists a constant C > 0 such that the inequality

E

(LT (0)−
∫ T

0

φε(Xs)ds

)2
 ≤ Cε1/2| log(ε)|. (3.18)

holds for any ε ∈ (0, 1).

Proof. Denote by pt(x0, x) the transition density of Xt. Since

E[LT (0)2] = 2

∫ T

0

∫ s

0

pu(x0, 0)ps−u(0, 0)duds,

E
[
LT (0)

∫ T

0

φε(Xs)ds
]

=

∫ T

0

ds

∫ T

s

du

∫
φε(x)ps(x0, x)pu−s(x, 0)dx

+

∫ T

0

ds

∫ s

0

du

∫
φε(x)pu(x0, 0)ps−u(0, x)dx,

E

[(∫ T

0

φε(Xs)ds
)2]

= 2

∫ T

0

ds

∫ T

s

du

∫ ∫
φε(x)φε(y)ps(x0, x)pu−s(x, y)dxdy,

we decompose the left hand side of (3.18) as 2S1 + 2S2 where

S1 = −
∫ T

0

ds

∫ s

0

du

∫
pu(x0, 0)φε(x)

(
ps−u(0, x)− ps−u(0, 0)

)
dx,

S2 =

∫ T

0

ds

∫ T

s

du

∫ (∫
φε(y)pu−s(x, y)dy − pu−s(x, 0)

)
φε(x)ps(x0, x)dx.

We first rewrite S1 as follows

S1 = −
∫ T

0

ds

∫ s

0

du

∫
pu(x0, 0)φε(x)

∫ x

0

∂ps−u
∂y

(0, y)dydx.

Using the estimate (4.1) and the definition of φε, we have

|S1| ≤ C
∫ T

0

ds

∫ s

0

du

∫
1√
u

e−
Cx2

ε

√
ε

∫ |x|
0

e−
Cy2

s−u

s− u
dydx ≤ Cε1/2| log(ε)|,

where the last estimate follows from Lemma 4.5(vi). To estimate S2, we write

S2 =

∫ T

0

ds

∫ T

s

du

∫ ∫ ∫ y

0

φε(y)
∂pu−s
∂z

(x, z)φε(x)ps(x0, x)dzdydx.
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Thus, as in the estimation of S1, we have

|S2| ≤ C
∫ T

0

ds

∫ T

s

du

∫ ∞
0

dyφε(y)

∫ y

0

dz

∫
e−

C(x−z)2
u−s

u− s
φε(x)

e−
C(x−x0)2

s

√
s

dx

+ C

∫ T

0

ds

∫ T

s

du

∫ 0

−∞
dyφε(y)

∫ 0

y

dz

∫
e−

C(x−z)2
u−s

u− s
φε(x)

e−
C(x−x0)2

s

√
s

dx

≤ C
∫ T

0

ds

∫ T

s

du

∫
dyφε(y)

∫ |y|
0

1√
s(u− s)(u− s+ ε)

dz.

Using Lemma 4.5(v) we obtain

|S2| ≤ Cε
1
2 | log(ε)|.

This finishes the proof of Lemma 3.7.

Lemma 3.8. Suppose that φ̂ε ∈ C1(R,R+) such that there exists ε > 0 satisfying

|φ̂ε(x)|+
√
ε|φ̂′ε(x)| ≤ C e

−Cx2ε
√
ε
. (3.19)

Then ∣∣∣E[ ∫ T

0

φ̂ε(Xs)ds
]
− E

[ ∫ T

0

φ̂ε(Xηn(s))ds
]∣∣∣ ≤ C log(n)

n
√
ε
. (3.20)

Moreover, if x0 6= 0 then ∣∣∣E[ ∫ T

0

φ̂ε(Xs)ds
]
− E

[ ∫ T

0

φ̂ε(Xηn(s))ds
]∣∣∣ ≤ C log(n)

n|x0|
. (3.21)

Proof. The estimate (3.20) is deduced as in Theorem 2.5 in [10], using the uniform estimate |φ̂ε(x)| ≤ C√
ε
.

We need only to show (3.21) for x0 6= 0,∣∣∣E[ ∫ T

0

φ̂ε(Xs)ds
]
− E

[ ∫ T

0

φ̂ε(Xηn(s))ds
]∣∣∣

≤
∫ T

n

0

E[φ̂ε(Xs) + φ̂ε(Xηn(s))]ds+

∫ T

T
n

∣∣∣E[φ̂ε(Xs)− φ̂ε(Xηn(s))]
∣∣∣ds

≤
∫ T

n

0

(∫
φ̂ε(x)ps(x0, x)dx+ φ̂ε(x0)

)
ds+

∫ T

T
n

ds

∫
dyφ̂ε(y)

∫ s

ηn(s)

|∂upu(x0, y)|du.

Using the Gaussian bound for the transition density p (Lemma 4.1), hypothesis (3.19) and the Chapman-
Kolmogorov property for Gaussian kernels, we get∣∣∣E[ ∫ T

0

φ̂ε(Xs)ds
]
− E

[ ∫ T

0

φ̂ε(Xηn(s))ds
]∣∣∣

≤
∫ T

n

0

e−
Cx20
s+ε

√
s+ ε

ds+
T φ̂ε(x0)

n
+

∫ T

T
n

∫ s

ηn(s)

e−
Cx20
u+ε

u
√
u+ ε

duds

≤ C
( T

n|x0|
+

1

|x0|

∫ T

T
n

ds

∫ s

ηn(s)

1

u
du
)

≤ C log(n)

n|x0|
,

where the second inequality follows from the estimate: e−
x20
u ≤

√
u
|x0| for any u > 0 and the last estimate from

Fubini’s Theorem.
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Lemma 3.9. Let φ̂ε : R→ R satisfying (3.19). Assume that σ = 1. For any p ≥ 1

E

(∫ T

0

φ̂ε(Xs)ds−
∫ T

0

φ̂ε(Xηn(s))ds

)2p
 ≤ C

εpn2p−
1
2

.

Proof. Denote

Sn =

∫ T

0

φ̂ε(Xs)ds−
∫ T

0

φ̂ε(Xηn(s))ds.

As in the proof of Theorem 2.3(i), using the Clark-Ocone formula and the BDG inequality, we have

E
[
|Sn − E[Sn]|2p

]
≤ Cnp−1(T 1

n,ε + T 2
n,ε),

where

T 1
n,ε =

n−1∑
i=0

E

[∣∣∣∣∣
∫ ti+1

ti

(∫ ti+1

u

Eu
[
|φ̂′ε(Xs)|

]
ds

)2

du

∣∣∣∣∣
p]
,

T 2
n,ε =

n−1∑
i=0

E

∣∣∣∣∣∣
∫ ti+1

ti

(∫ T

ti+1

Eu
[
φ̂′ε(Xs)Es − φ̂′ε(Xηn(s))Eηn(s)

]
ds

)2

du

∣∣∣∣∣∣
p .

Next, we will show that
T 1
n,ε + T 2

n,ε ≤ Cε−pn−2p+
1
2 .

Therefore the proof of the Lemma finishes by using Lemma 3.8. The estimate of T 1
n,ε is similar to the one in

the proof of Theorem 2.3 (Section 3.3.1). In fact, due to condition (3.19), we obtain that
∫
|φ̂′ε(x)|dx ≤ C√

ε
.

Therefore K(φ̂ε) ≤ C√
ε

and hence,

T 1
n ≤

C

εpn2p−
1
2

.

To estimate T 2
n,ε, we notice that since ‖φ̂ε(Xv)‖u,2 ≤ Cε−

1
4 (v−u+ε)−

1
4 e−

CX2
u

v−u+ε and proceeding as in Section

3.3.2, applying Lemma 3.6 for ζ = φ̂ε yields T 2
n,N ≤ C(Un,ε,1 + Un,ε,2) where

Un,ε,1 =

n−1∑
i=0

E


∣∣∣∣∣∣∣
∫ ti+1

ti

 n−1∑
j=i+1

∫ tj+1

tj

ds

∫ s

tj

(v − u)−1‖φ̂ε(Xv)‖u,2dv

2

du

∣∣∣∣∣∣∣
p ,

Un,ε,2 =

n−1∑
i=0

E


∣∣∣∣∣∣∣
∫ ti+1

ti

 n−1∑
j=i+1

∫ tj+1

tj

ds

∫ s

tj

1

(v − u)3/2

∫
|φ̂′ε(z)| exp

(
− C(z −Xu)2

v − u

)
dzdv

2

du

∣∣∣∣∣∣∣
p .

The proof continues along the same lines of (3.13) in Section 3.3.2 after noticing that E[‖φ̂ε(Xv)‖2pu,2] ≤

Cε−
p
2 (v − u+ ε)

1−p
2

e
−
Cx20
v+ε√
v+ε

in order to obtain

Un,ε,1 ≤
C

n3p−1

n−1∑
i=0

∫ ti+1

ti

{∫ T

ti+1

(v − u)−1ε−1/4(v − u+ ε)(1−p)/4p(v + ε)−1/4p exp
(
− Cx20
v + ε

)
dv

}2p

du

≤ C

εpn3p−1

n−1∑
i=0

∫ ti+1

ti

{∫ T

ti+1

(v − u)−1dv

}2p

du.

We have using Lemma 4.5(i) that

Un,ε,1 ≤
C

εpn3p−1

n−1∑
i=0

∫ ti+1

ti

(
log

(
T − u
ti+1 − u

))2p
du ≤ C log2p(n)

εpn3p−1
.
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The evaluation of Un,ε,2 is also done similarly, to obtain

Un,ε,2 ≤
C

εpn2p+
1
2

n−1∑
i=0

t
− 1

2
i+1 ≤

C

εpn2p−
1
2

.

This concludes the proof of Lemma 3.9.

Lemma 3.10. For any p ≥ 1

E

(∫ T

0

φε(Xs)ds−
∫ T

0

φε(Xηn(s))ds

)2p
 ≤ C

εpn2p−
1
2

.

Proof. Denote φ̂ε = φε ◦ S−1 where S is defined at the beginning of Section 3. It is straightforward to verify
that φ̂ε satisfies condition (3.19). Applying Lemma 3.9 for the diffusion process Y , defined by (3.1), we obtain
the desired result.

Choosing the optimal value for ε, i.e., ε = n−1 in Lemmas 3.7, 3.8 and 3.10, we conclude the proof of
Theorem 2.6.

Conclusion

Considering the weak and strong rate for multidimensional occupation time remains an open and difficult
problem because, in the technique presented in this paper, it is essential that the same process X is con-
sidered in Lemma 3.6 at different times s and ηn(s). In the general multidimensional case, if one considers
Eu[ζ ′(Xs)Es − ζ ′(X̄ηn(s))Ēηn(s)] where the bars denote (Euler-Maruyama) approximation process, then the
estimates are not easy to obtain. This topic as well as possible extensions to Multilevel Monte Carlo (MLMC)
methods will be treated in future research. In particular, the fact that the strong rates obtained here for the
approximation of local times are slower than the classical rates for smooth functionals imply that the MLMC
methods have to be implemented taking into account both strong and weak rates of convergence.

In the case of general weak approximation problem for local times (i.e. non polynomial function f), one
may find ways of obtaining non-optimal rates using the strong rate obtained in Theorem 2.6.

Another aspect of interest is the non-uniform elliptic case. For example in the hypoelliptic case. the
estimates in time that appear in Lemma 4.1 are not valid. In fact, the terms t − s are affected by higher
powers which make the problem difficult to handle.
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4 Appendix

4.1 Some simple inequalities related to Gaussian densities

We first recall the following well-known Gaussian estimate for the transition probability density of diffusion
X.

Lemma 4.1. ([6], Chapter 9) Let X be defined by (1.1). Under the condition (H), the Markov process X
admits a transition probability density p(s, x; t, y) = pt−s(x, y) satisfying

|∂mx ∂ny pt−s(x, y)| ≤ C

(t− s)m+n+1
2

exp
(
− (y − x)2

C(t− s)

)
, (4.1)

for all m,n ≥ 0, m+ n ≤ 2 and for some positive constant C which does not depend on s, t.

The following inequality can be easily obtained from a Gaussian bound on the transition density of X,
and the fact that a convolution of Gaussian densities is still a Gaussian density.

Lemma 4.2.

Er
[
exp

(
− C (z −Xs)

2

v − s

)]
≤ C
√
v − s√
v − r

exp
(
− C(z −Xr)

2

v − r

)
. (4.2)

Lemma 4.3. Suppose that u ≥ v > r > 0 and x, y ∈ R, then

ux2 + vy2 − 2rxy

uv − r2
≥ x2 + y2

u+ v
. (4.3)

Proof. The proof of the following Lemma is algebraic and straightforward. In fact, multiply both sides of the
inequality by (uv−r2)(u+v) and then simplify in order to obtain the inequality (ux−ry)2+(vy−rx)2 ≥ 0.
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Lemma 4.4. Suppose that ζ ∈ C1
exp(R). Let ai : (u, v) → R+, i = 1, 2 be two integrable functions. Define

for i = 1, 2

Ii =

∫ v

u

ai(s)

∫
|ζ ′(x)| exp

(
− C(x−Xu)2

s− u

)
dxds

E [I1I2] ≤ C
∫
[u,v]2

a1(s)a2(t)
√
s− u√

s

(∫
|ζ ′(x)| exp

(
− C x2

s+ t

)
dx

)2

dsdt.

Proof. Expanding the square and Fubini’s theorem, (4.1), straightforward calculations with Gaussian kernels
and (4.3) it is enough to note that there exists a positive constant C such that

E
[∫

R2

|ζ ′(x)||ζ ′(y)| exp
(
− C(x−Xu)2

s− u

)
exp

(
− C(y −Xu)2

t− u

)
dydx

]
≤ C√

u

∫
R3

|ζ ′(x)ζ ′(y)| exp
(
− C(x− z)2

s− u
− C(y − z)2

t− u
− Cz2

u

)
dzdxdy

= C
√

(s− u)(t− u)

∫
R2

|ζ ′(x)ζ ′(y)|√
st− u2

exp
(
− C sy

2 + tx2 − 2uxy

st− u2
)
dxdy

≤ C
√

(s− u)(t− u)

∫
R2

|ζ ′(x)ζ ′(y)|√
st− u2

exp
(
− Cx

2 + y2

s+ t

)
dxdy.

Finally one uses the inequality st− u2 ≥ s(t− u) to finish the proof.

4.2 Some error estimates for Riemman sums

In this section we give various estimates for error terms that appear in various Riemann like sums throughout
the article.

Lemma 4.5. We have the following estimates for a positive constant C independent of n and ε,

(i)
∫ ti+1

ti

(
log
(

T−u
ti+1−u

))2p
du ≤ C log2p(n)

n , for any p ≥ 1.

(ii)
∫ ti+1

ti

∫ ti
0

∫ T
r

∫ s
ti

1
(v−r)

√
u
dvdudrds ≤ C log(n)

n2 ,

(iii)
∑n−1
i=0

∫ ti+1

ti
ds
∫ ti
0
dr
∫ T
r
du
∫ s
ti

(v − r)−1(u− r)− 1
2 v−

1
2 dv ≤ C log(n)

n ,

(iv)
∑n−1
i=0

∫ ti+1

ti
ds
∫ s
ti
dr
∫ T
r

1√
s(v−r)

dv ≤ C
n ,

(v)
∫ T
0
ds
∫ T
s
du
∫
dyφε(y)

∫ |y|
0

1√
s(u−s)(u−s+ε)

dz ≤ Cε 1
2 | log(ε)|.

(vi)
∫ T
0
ds
∫ s
0
du
∫
u−

1
2
e−

Cx2

ε√
ε

∫ |x|
0

e
−Cy

2

s−u

s−u dydx ≤ Cε 1
2 | log(ε)|.

Proof. All the proofs follow by explicit integration when possible and then bounding the terms either by T
or T

n . We only remark explicit points where the calculation has to be carefully done.

Proof of (i). Using a change of variable x = T−ti+1

ti+1−u , we write∫ ti+1

ti

(
log

(
T − u
ti+1 − u

))2p
du =

T (n− i− 1)

n

∫ ∞
n−i−1

x−2 log2p(x+ 1)dx ≤ C log2p(n)

n
,

where the last inequality is obtained by applying integration by parts formula [2p] + 1 times and the trivial
inequality 1

x+1 <
1
x for x > 0.

Proof of (ii). One integrates directly wrt u. The result is bounded by
√
T . Then by Fubini’s theorem

one carries out the integral wrt s first and then wrt r and v respectively. This gives the estimate.
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Proof of (iii). Integrate first wrt u. Secondly, by Fubini integrate wrt s and bound the result by n−1.
Integrate wrt r to obtain the function

1

n

n−1∑
i=0

∫ ti+1

ti

1√
v

log
( v

v − ti

)
dv

≤ 1

n

n−1∑
i=1

1√
ti

∫ ti+1

ti

log
( v

v − ti

)
dv

≤ C log(n)

n
+

1

n

n−1∑
i=1

1√
ti

(ti+1 log(ti+1)− ti log(ti)).

The Proof of (iv) is straightforward.
Proof of (v). Integrating with dz and dy, we obtain∫ T

0

ds

∫ T

s

du

∫
dyε−

1
2 e−

y2

2ε

∫ |y|
0

1√
s(u− s)(u− s+ ε)

dz

= Cε
1
2

∫ T

0

ds

∫ T

s

1√
s(u− s)(u− s+ ε)

du

By using a change of variables x = u−s
ε we obtain∫ T

s

1√
(u− s)(u− s+ ε)

du =

∫ T−s
ε

0

1√
x(x+ 1)

dx ≤ C
(

1 + log

(
T − s
ε

))
,

hence ∫ T

0

ds

∫ T

s

1√
s(u− s)(u− s+ ε)

du ≤ C
∫ T

0

1√
s

(
1 + log

(
T − s
ε

))
ds ≤ C| log(ε)|.

Proof of (vi).

∫ T

0

ds

∫ s

0

du

∫
u−

1
2
e−

Cx2

ε

√
ε

∫ |x|
0

e−
Cy2

s−u

s− u
dydx

=

∫ T

0

ds

∫ (s−ε)∨0

0

du

∫
u−

1
2
e−

Cx2

ε

√
ε

∫ |x|
0

e−
Cy2

s−u

s− u
dydx

+

∫ T

0

ds

∫ s

(s−ε)∨0
du

∫
u−

1
2
e−

Cx2

ε

√
ε

∫ |x|
0

e−
Cy2

s−u

s− u
dydx

= J1 + J2.

We have

J1 ≤ C
∫ T

0

ds

∫ (s−ε)∨0

0

du

∫
u−

1
2
e−

Cx2

ε

√
ε
|x|(s− u)−1dx

≤ Cε 1
2

∫ T

0

ds

∫ (s−ε)∨0

0

u−
1
2 (s− u)−1du ≤ Cε 1

2 | log(ε)|,

and

J2 ≤ C
∫ T

0

ds

∫ s

(s−ε)∨0
du

∫
u−

1
2
e−

Cx2

ε

√
ε

(s− u)−
1
2 dx

≤ C
∫ T

0

ds

∫ s

(s−ε)∨0
u−

1
2 (s− u)−

1
2 du ≤ Cε 1

2 .
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