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Abstract. In this article we briefly survey recent advances in some sim-
ulation methods for Lévy driven stochastic differential equations. We
give a brief description of each method and extend the one jump scheme
method for some subordinated models like the NIG process. Simulations
of all the presented methods are performed and compared.
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1. Introduction

Let X be an RN -valued adapted stochastic process, unique solution of the
stochastic differential equation (SDE) with jumps

Xt(x) = x+

∫ t

0

Ṽ0(Xs(x))ds+

∫ t

0

V (Xs(x))dBs+

∫ t

0

h(Xs−(x))dZs, t ∈ [0, 1],

(1.1)

with smooth coefficients Ṽ0 : RN → RN , V = (V
(j)
i )i=1,...,d

j=1,...,N : RN → RN ⊗
Rd, h : RN → RN ⊗ Rd whose derivatives of any order (≥ 1) are bounded.
Here B denotes an d-dimensional standard Brownian motion and Z denotes
an d-dimensional Lévy process with Lévy triplet (γ, 0, ν) such that all of its
moments are finite unless stated otherwise.

In this report, we numerically compare and evaluate two types of dis-
crete approximation schemes for X in order to estimate E[f(X1)] for smooth

functions f . More precisely, we find a discretization scheme (X
(n)
tj (x))nj=0 for

a partition 0 = t0 < t1 < . . . < tn = 1 such that

|E[f(X1(x))]− E[f(X
(n)
1 (x))]| ≤ C(f, x)

nm
, (1.2)
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for some m ∈ N and a positive constant C(f, x).

In such a case, we say that such a scheme is an m-th order discretization
scheme for X. The actual simulation to estimate E[f(X1(x))] is carried out

using Monte Carlo methods. That is, one computes 1
NMC

∑NMC
i=1 f(X

(n),i
1 (x))

where X
(n),i
1 (x), i = 1, . . . , NMC denotes NMC i.i.d copies of X

(n)
1 (x). There-

fore, using the law of large numbers, the final error of the estimate is of the
order O( 1√

NMC
+ 1

nm ). Then the optimal choice of n is O(nm) = O(
√
NMC).

From this result, we can see that there is a reduction in computation
time if one can obtain a scheme with a high value of m even if the computa-
tional cost increases linearly with m. In this light, we want to address in this
article, the performance of some competing approximation schemes for jump
driven sde’s of the type (1.1) in the infinite activity case (i.e. ν(Rd) =∞) as
it is in the case in many financial models.

The first simulation proposal is to simulate all the jump times and their
corresponding jump sizes in the case that Z is a finite activity process (i.e.
ν(Rd) < ∞) (see e.g. [3]). This becomes impossible in the infinite activity
case as the number of jumps in any interval is infinite a.s. and therefore in-
stead one may simulate all jump times for jump sizes bigger than a fixed
small parameter ε. Following a proposal by Asmussen and Rosiński [2], the
small jumps are replaced by an independent Brownian motion with variance
given by

∫
|y|≤ε |y|

2ν(dy). It has been shown in [2] and [6] that when approxi-

mating the small jumps by Gaussian variables, the convergence rates, which
are measured by either the Kolmogorov distance between laws of processes
at a fixed time or the mean square of the supremum of the error during a
finite and fixed interval, are significantly improved (see also [12]). In our con-
text of weak approximation (1.2), we would also like that the approximation
of small jumps should be accurate. When drift and/or continuous diffusion
components appear in the stochastic differential equation then one naturally
faces an optimality problem. That is, how to match the computational effort
done on the jump part with efficient approximation schemes for the drift and
the Brownian part of the equation between jump times.

This issue was addressed in the article [8]. The method introduced in
that article will be one of the methods that we will use in our comparison.
In that method one uses all the jumps of size bigger than ε, the jump times
become time partition points and one approximates the effect of the drift up
to a high order of accuracy and there is no continuous diffusion part. In [8]
it is proven that the rate of convergence is fast but the calculation time may
be long.

On another article [14], the authors take a different point of view. In-
stead of using a random time partition points given by the jumps times cor-
responding to jump sizes bigger than ε, a fixed time partition is used and an
approximation for the increments of the Lévy process is used. In this approx-
imation, one uses an approximation with at most a finite number of jumps
per interval. The maximum number of jumps is set by the user and there-
fore this becomes a limitation on the computation time by the part of the
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user. This approach which, in some sense, goes in the reverse direction of the
scheme in [8] assumes that an approximation for the drift and the continuous
diffusion part have been set and one tries to find a simple approximation of
the increment of the Lévy process so as to match the computational effort in-
vested in the Brownian and drift part of the equation. In order to introduce
this method, one needs to explain the framework of the operator splitting
method in its stochastic form.

This method is well known as a numerical method for partial differential
equations. The idea is to use it, finding stochastic representations for the
approximating splitting therefore providing new simulations methods based
on composition of flows which parallel the composition of semigroups. This
idea has been successfully used for stochastic differential equations driven by
Brownian motion (see [9] and [10]).

Nevertheless, it should be noted that the performance of every estima-
tion scheme depends on the activity level of small jump of the driving Lévy
process Z, which is measured by the Blumenthal-Getoor index

% = inf{p ≥ 0 :

∫
‖x‖≤1

‖x‖pν(dx) <∞}.

Since the Lévy measure ν satisfying
∫
‖x‖≤1 ‖x‖

2ν(dx) < ∞, the index % ∈
[0, 2].

The goal of the present article is to give a non-technical introduction to
these schemes and to present a throughout simulation study in order to assess
the properties of the approximation schemes described above. Therefore we
refer the reader for the proofs to the corresponding articles and we only give
here the intuition behind the schemes.

In order to give the reader an idea of what are the technical conditions
that need to be satisfied to obtain a new scheme, in Section 2.4.5, we deal
with one case that was not treated in [14]. The case we study corresponds to
a normal subordinated model. In this case, we have that

∫
|y|ν(dy) =∞. We

will verify the main two conditions needed in order to establish the weak rate
for the approximation method which follows from the main theorems 4.1, 4.3
and 5.1 in [14].

2. Approximation Schemes

In this section, we define the approximation schemes for equation (1.1) which
we will compare in this paper. For proofs we refer the reader to the corre-
sponding theoretical articles. We strive here for understanding and intuition
of these schemes.

2.1. Euler’s Scheme

The Euler scheme is the most natural approximation scheme. Its program-
ming flow is as follows. We denote tni = i/n, i = 1, . . . , n.
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1. Generate a sequence of independent random variables ∆Zni , i =
0, . . . , n− 1, which have the same distribution as Z1/n.

2. Generate a sequence of independent random variables ∆Bni , i =
0, . . . , n− 1, which have the same distribution as B1/n.

3. X̄0 = x and for i = 0, . . . , n− 1,

X̄(i+1)/n = X̄i/n +
1

n
Ṽ0(X̄i/n(x)) + V (X̄i/n(x))∆Bni + h(X̄i/n(x))∆Zni .

Various articles and results have been written on this scheme. The main
problem with this scheme is that it assumes that one can simulate the Brow-
nian increment and the Lévy increment with the same computational effort.
This is hardly the case in general, as the law of Lévy processes is generally
given through their characteristic function. Therefore in general, an inversion
procedure is needed. For more on this direction, see [7].

This simulation scheme is an approximation scheme of order 1 under
sufficient conditions on the Lévy measure and it has been proven in e.g. [11].

2.2. Jump-Size Adapted Discretization Schemes

The purpose of this section is to introduce a simulation method which uses
all the jumps associated with the Lévy process whose norm are bigger than
a certain fixed value ε. As the number of this type of jumps is finite on
finite intervals then this approximation process defines a compound Poisson
process. Therefore its simulation may be possible if we assume that the jump
distribution can be simulated. The main drawback of the method is that it
may take long time to compute as ε becomes small. On the other hand, it is
a very accurate method. For further details, we refer the reader to [8].

To introduce the method, suppose that V = Ṽ0 = 0 and Z is a d-
dimensional Lévy process without diffusion component. That is,

Zt = γt+

∫ t

0

∫
|y|≤1

yN̂(dy, ds) +

∫ t

0

∫
|y|>1

yN(dy, ds), t ∈ [0, 1].

Here, γ ∈ Rd and N is a Poisson random measure on Rd×[0,∞] with intensity

ν satisfying
∫

(1 ∧ |y|2)ν(dy) <∞. N̂(dy, ds) = N(dy, ds)− ν(dy)ds denotes
the compensated version of N .

Consider a family of measurable functions (χε)ε>0 : Rd → [0, 1] such
that

∫
Rd χε(y)ν(dy) < ∞ for all ε > 0, and limε→0 χε(y) = 0, for all y 6= 0.

This function will serve as the localization function for the jumps which
will be simulated. Therefore, unless explicitly mentioned otherwise, we will
usually take χε(y) = 1(|y| > ε).

We assume that the associated Lévy measure ν satisfies that

ν(Rd) =∞,
∫
Rd
|y|2ν(dy) <∞.

Let Nε be a Poisson random measure with intensity χεν×ds and N̂ε its

compensated Poisson random measure. Denote N̂ε a compensated Poisson
random measure with intensity χεν × ds, where χε = 1− χε.
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The processes Z can then be represented in law as follows

Zt
d
= γεt+ Zεt +Rεt ,

γε = γ −
∫
|y|≤1

yχεν(dy) +

∫
|y|>1

yχεν(dy),

Zεt =

∫ t

0

∫
Rd
yNε(dy, ds),

Rεt =

∫ t

0

∫
Rd
yN̂ε(dy, ds).

We denote by λε =
∫
Rd χε(y)ν(dy) the intensity of Zε, by T εi , i ∈ N the

i-th jump time of Zε with T ε0 = 0, and by Σε =
( ∫

Rd yiyjχε(y)ν(dy)
)
1≤i,j≤d

the covariance matrix of Rε1. In the one-dimensional case, d = 1, we set
σ2
ε = (Σε)11. Given ε > 0 and Lévy measure ν, one can compute λε,Σε and

generate the sequence (T εi ). The random variable Rε1 will be approximated
using a Gaussian random variable with mean zero and variance Σε. This is
the so-called Asmussen-Rosiński approximation.

2.2.1. Kohatsu-Tankov Scheme in Dimension One. The following one dimen-
sional scheme (d = N = 1) uses an explicit transformation between jump
times in order to solve explicitly the ODE.

dXt = h(Xt)dt, X0 = x.

Suppose that 1/h is locally integrable, this equation has a solution

Xt = θ(t;x) = F−1(t+ F (x)),

where F is a primitive of 1/h.

We define inductively X̂(0) = X0 and for i ≥ 0,

X̂(T εi+1−) = θ
(
γε(T

ε
i+1 − T εi ) + σε(W (T εi+1)−W (T εi ))

− 1

2
h′(X̂(T εi ))σ2

ε(T εi+1 − T εi ); X̂(T εi )
)
, (2.1)

X̂(T εi+1) = X̂(T εi+1−) + h(X̂(T εi+1−))∆Z(T εi+1). (2.2)

For an arbitrary point t, we define

X̂(t) = θ
(
γε(t− ηt) + σε(W (t)−W (ηt))−

1

2
h′(X̂(ηt))σ

2
ε(t− ηt); X̂(ηt)

)
,

(2.3)

where ηt = sup{T εi : T εi ≤ t}.
The logic behind the above scheme should be clear. Between jumps we

use a high order approximation to the solution of the stochastic differential
equation driven by the drift coefficient γε and the Wiener process W which
replaces the small jumps (i.e. Asmussen-Rosiński approximation). When a
jump happens the corresponding jump is added to the system.
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The rate of convergence of this scheme, under the condition∫
|y|6ν(dy) <∞ is given by

∣∣E(f(X̂1)− f(X1))
∣∣ ≤ C(σ2

ε

λε
(σ2
ε + |γε|) +

∫
R
|y|3χ̄εν(dy)

)
,

for some constant C > 0 not depend on ε (see [8, Theorem 2]).

The above scheme can be applied when F can be computed explicitly.
Otherwise, one has to resort to approximations for F and then the order of
the approximation becomes an important issue. See [8] for more comments
on this matter.

2.2.2. Kohatsu-Tankov Scheme in Higher Dimension. This scheme uses in-
stead a Taylor expansion between jumps as the respective stochastic differ-
ential equation between jumps can not be solved explicitly. We denote

X̃(t) = Y 0(t) + Y1(t), t > ηt,

X̃(T εi ) = X̃(T εi −) + h(X̃(T εi −))∆Z(T εi ),

Y 0(t) = X̃(ηt) +

∫ t

ηt

h(Y 0(t))γεds,

Y1(t) =

N∑
i=1

∫ t

ηt

∂h

∂xi
(Y 0(s))Y i1 (s)γεds+

∫ t

ηt

h(Y 0(s))dW ε(s),

where

• W ε is a d-dimensional Brownian motion with covariance matrix Σε in-
dependent of Z;
• the random vector Y1(t) conditioned on T εi , i ∈ N, t ∈ (T εj , T

ε
j+1) and

X̃(T εj ) is a Gaussian random vector with conditional covariance matrix
Ω(t) which satisfies the (matrix) linear equation

Ω(t) =

∫ t

ηt

(Ω(s)M(s) +M⊥(s)Ω⊥(s) +N(s))ds,

where M⊥ denotes the transpose of the matrix M and

Mij(t) =
∂hjk(Y 0(t))

∂xi
γkε and N(t) = h(Y 0(t))Σεh

⊥(Y 0(t)).

The rate of convergence of the above scheme under the condition∫
|y|6ν(dy) <∞ is given by

∣∣E(f(X̃1)− f(X1))
∣∣ ≤ C(‖Σε‖

λε
(‖Σε‖+ |γε|) +

∫
R
|y|3χ̄εν(dy)

)
,

for some constant C > 0 which does not depend on ε (see Theorem 16 [8]).
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2.3. Operator Splitting Schemes

We define V0 = Ṽ0 − 1
2

∑d
i=1

∑N
j=1

∂Vi
∂xj

V
(j)
i . Then Equation (1.1) can be

rewritten in the following Stratonovich form

Xt(x) = x+

d∑
i=0

∫ t

0

Vi(Xs−(x)) ◦ dBis +

∫ t

0

h(Xs−(x))dZs, (2.4)

where B0
t = t. We define the semigroup Pt by

Ptf(x) = E[f(Xt(x))],

where f : RN → R is a continuous smooth function with polynomial growth
at infinity.

We will approximate Ptf(x) = E[f(Xt(x))] by using its Taylor expan-
sion for small t > 0. We will first compute, using Itô’s formula

Phf(x)− f(x)

h
.

For this, note that Itô’s formula gives

f(Xh(x))− f(x) =

∫ h

0

∇f(Xs(x))dXc
s(x)

+
1

2

d∑
i=1

N∑
j=1

∫ h

0

D2
ijf(Xs(x))d〈Xi(x), Xj(x)〉s

+
∑
s≤h

{f(Xs−(x) + h(Xs−(x))∆Zs)

−f(Xs−(x))−∇f(Xs−(x))h(Xs−(x))∆Zs} .

After taking expectations and limits we obtain:

lim
h→0

Phf(x)− f(x)

h
= Lf(x) =

d+1∑
k=0

Lif(x), (2.5)

where

L0f(x) ≡ Ṽ0f(x) =

N∑
k=1

∂f

∂xk
(x)Ṽ

(k)
0 (x),

Lif(x) =
1

2
V 2
i f(x) =

1

2

N∑
j,k=1

∂2f(x)

∂xj∂xk
V

(j)
i V

(k)
i (x), i = 1, . . . , d,

Ld+1f(x) = ∇f(x)h(x)γ +

∫
(f(x+ h(x)y)− f(x)−∇f(x)h(x)y)ν(dy).

(2.6)

From the above calculation one clearly understands that the operator L0 is
associated to the drift of Equation (2.4), Li for i = 1, ..., d is associated to
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the i-th Brownian motion and Ld+1 is associated to the Lévy process. Note
also that

∂Ptf(x)

∂t
= LPtf(x)

∂kPtf(x)

∂tk
= LkPtf(x).

Operator L is called the generator of P and this fact is usually written
as Pt = etL. Due to the semigroup property of P , say Pt1+t2 = Pt1Pt2 , one
understands that in order to approximate X one needs only to approximate
Pt for small values of t and then use the following composition property

Important property: Let Y 1 and Y 2 be two independent stochastic
processes generating semigroups R1 and R2 and with generators K1 and K2

respectively, then

E[f(Y 1
t (Y 2

t (x)))] = R2
tR

1
t f(x) = etK

2

etK
1

f(x).

Note that the operators above are not in general commutative.

In fact, if we iterate the above arguments we have that for a smooth
function f ,

Ptf(x) = f(x) + tLf(x) +
t2

2
L2f(x) + .... = etLf(x).

Example. In this example, we retake the case of the Euler scheme in Sec-
tion 2.1 and analyze it in the light of the previous argument.

Now let Q be the “semigroup” associated to the Euler scheme. That
is, define Qtf(x) = E[f(X̄t)] for t ≤ 1

n . Then one can obtain the following
expansion

Qtf(x) = f(x) + tL̄1f(x) +
t2

2
L̄2f(x) + ...

In fact, let h ≤ 1/n then

f(Xn
h (x))−f(x)=

∫ h

0

∇f(Xn
s (x))dXn,c

s (x)

+
1

2

d∑
i=1

N∑
j=1

∫ h

0

D2
ijf(Xn

s (x))d〈Xn,i(x),Xn,j(x)〉s

+
∑
s≤h

{
f(Xn

s−(x) + h(Xn
s−(x))∆Ys)− f(Xn

s−(x))

−∇f(Xn
s−(x))h(Xn

s−(x))∆Ys
}
.

After some calculation one obtains that L̄1 = L and that L̄2 6= L2.
Therefore one has that the local error Ptf(x) − Qtf(x) = O(t2). The proof
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finishes by using the following telescoping decomposition

E[f(X1(x))]− E[f(X̄1(x))] = −
n∑
i=1

{
Qi1/nP1−tif(x)−Qi−11/nP1−ti−1

f(x)
}

=

n∑
i=1

{
Qi−11/nQ1/nP1−tif(x)−Qi−11/nP1/nP1−tif(x)

}
=

n∑
i=1

{
Qi−11/n

(
Q1/n − P1/n

)
P1−tif(x)

}
.

Remark 2.1. One also needs the “stability” property of the operator Q
in order to finish the argument above. That is, we need two properties:
(1) the different Q1/nf − P1/nf is of order O(n−2) under certain regular-

ity conditions on f (e.g. f ∈ C3
p); and (2) the iteration Qi−11/n preserves

the error rate of Q1/n − P1/n without demanding any further regularity of
(Q1/n − P1/n)P1−tif(x).

Next, we define the following stochastic processes Xi,t(x), i = 0, . . . , d+
1, usually called coordinate processes, which will correspond to the operator
decomposition in (2.5) and which are the unique solutions of

X0,t(x) = x+

∫ t

0

V0(X0,s(x))ds,

Xi,t(x) = x+

∫ t

0

Vi(Xi,s(x)) ◦ dBis, 1 ≤ i ≤ d,

Xd+1,t(x) = x+

∫ t

0

h(Xd+1,s−(x))dZs.

Then we define

Qi,tf(x) = E[f(Xi,t(x))],

for a continuous function f : RN → R with polynomial growth at infinity.

Pt = etL =

m∑
k=0

tk

k!
Lk +O(tm+1).

Note that L =
∑d+1
i=0 Li and we also let

P it = etLi =

m∑
k=0

tk

k!
Lki +O(tm+1).

Our next goal is to approximate etL, through a combination of the “coordi-
nate” semigroups esLi ’s such that

etL −
k∑
j=1

ξje
t1,jA1,j · · · et`j ,jA`j ,j = O(tm+1),
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with ti,j = ti,j(t) > 0, Ai,j ∈ {L0, L1, . . . , Ld+1} and weights {ξj} ⊂ [0, 1]

with
∑k
j=1 ξj = 1. In this case, one can define

Qt =

k∑
j=1

ξje
t1,jA1,j · · · et`j ,jA`j ,j . (2.7)

If needed one may further approximate each et1,jA1,j (m-th order scheme)
and in that case the definition of Q has to be further modified.

For simplicity let d+ 1 = 2 then

etL = I + tL+
t2

2
L2 +O(t3),

etL1etL2 = (I + tL1 +
t2

2
L2
1 + ...)(I + tL2 +

t2

2
L2
2 + ...)

= I + tL+
t2

2

(
L2
2 + L2

1 + 2L1L2

)
+O(t3),

then

etL − etL1etL2 = O(t2).

Therefore the composition of the semigroups in the above order will lead to
an approximation with local error of order O(t2). This approximation can be
improved by randomizing it as follows

etL − 1

2
etL1etL2 − 1

2
etL2etL1 = O(t3),

since L2 = L2
1 + L2

2 + L1L2 + L2L1. Finally one needs to obtain a stochas-
tic representation for 1

2e
tL1etL2 + 1

2e
tL2etL1 and possibly approximate each

coordinate process. These approximation methods for semigroups can be gen-
eralized in higher dimension as follows:

Example. Examples of schemes of order 2 = O(t3):
Ninomiya-Ninomiya (see [10]):

Qt =
1

2
e
t
2L0etL1 · · · etLd+1e

t
2L0 +

1

2
e
t
2L0etLd+1 · · · etL1e

t
2L0 .

Ninomiya-Victoir (see [9]):

Qt =
1

2
etL0etL1 · · · etLd+1 +

1

2
etLd+1 · · · etL1etL0 .

Splitting (Strang) method:

Qt = e
t
2L0 · · · e t2LdetLd+1e

t
2Ld · · · e t2L0 . (2.8)

It is easy to see that all the approximation operators Q mentioned above
are special case of (2.7). For example, the operator Q in Splitting (Strang)
method is deduced from (2.7) by putting k = 1; ξ = 1; ti = t

2 , for 1 ≤ i ≤
2d+ 1, i 6= d+ 1, td+1 = t; Ai = A2d+2−i = Li−1, for i = 1, . . . , d+ 1.

Splitting is a classical idea that is used in approximations for partial
differential equations. The only new feature in the present situation is that
we make use of stochastic representations in order to obtain the associated
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Monte Carlo method to (2.7). So the idea of this approximation method is to
combine the above algebraic approach with its stochastic representation and
if necessary the associated approximation of the stochastic representation in
order to obtain the definition of Q.

The first approximation is obtained through the algebraic semigroup
methods described above. The second approximation corresponds to an ap-
proximation to the corresponding semigroup et`j ,jA`j ,j which is amenable to
a stochastic representation and that can be easily simulated or easily approxi-
mated and then simulated. In the remainder of the paper, we will concentrate
on this second aspect of the approximations.

2.4. Stochastic Representations and Their Approximations

In this section we will show various cases where we approximate or simulate
directly the stochastic representation of Q.

2.4.1. Diffusion Process With a Finite Number of Jumps Per Interval. In
this section we will consider a full example by considering equation (2.4) in
the particular case that Z is a compound Poisson process. First, we need to
approximate the semigroup associated to the coordinate processes defined by

Qi,tf(x) := E[f(Xi,t(x))].

In the case of i = 1, ..., d we can approximate Q using the following result.
Before that we need to introduce the exponential mapping. For given α :
RN → RN , denote by zt(α, x) the solution of

dzs(α, x)

ds
= α(zs(α, x)), z0(α, x) = x, s ∈ [0, 1].

Theorem 2.2. Let Vi : RN → RN be a smooth function satisfying the lin-
ear growth condition: |Vi(x)| ≤ C(1 + |x|). Let zs(B

i
tVi, x), s ∈ [0, 1] be the

exponential map defined as above for fixed t ∈ [0, 1].
For i = 0, 1, ..., d, the sde

Xi,t(x) = x+

∫ t

0

Vi(Xi,s(x)) ◦ dBis

has a unique solution given by

Xi,t(x) = z1(BitVi, x).

Idea of the proof: Differentiating, we obtain

dzs(αVi, x)

dα
=

∫ s

0

Vi(zu(αVi, x))du+ α

∫ s

0

∇Vi(ziu(α, x))
dzu(αVi, x)

dα
du.

This gives by Itô’s formula that

dz1(BitVi, x) =
dz1(BitVi, x)

dα
◦ dBit.

Therefore the result follows if one proves that (exercise)

dz1(αVi, x)

dα
= Vi(z1(αVi, x)).
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Now, the process X can be simulated as follows: First, we can solve for each
time interval (ti, ti+1] the coordinate processes equations

1. Solve (say exactly) the d+ 1 ODE’s

X0,t/2(x) = x+

∫ t/2

0

V0(X0,s(x))ds

dzs(B
i
t/2Vi, x)

ds
= Bit/2Vi(zs(B

i
t/2Vi, x)), z0(Bit/2Vi, x) = x,

for s ∈ [0, 1] and i = 1, ..., d. Denote Xi,t(x) = z1(Bit/2Vi, x).

2. Solve (say exactly) the d+ 1 ODE’s

X̄0,t/2(x) = x+

∫ t/2

0

V0(X̄0,s(x))ds

dzs(B̄
i
t/2Vi, x)

ds
= B̄it/2Vi(zs(B̄

i
t/2Vi, x)), z0(B̄it/2Vi, x) = x,

for s ∈ [0, 1], i = 1, ..., d and B̄ is an independent copy of B. Denote
X̄i,t(x) = z1(B̄it/2Vi, x).

3. Solve (say exactly) the difference equation

Xd+1,t(x) = x+

∫ t

0

h(Xd+1,s−(x))dZs.

The global idea is that Xi,t(x) represents the process that has as generator
Li. Hence, we use (say) the splitting (Strang) formula (2.8) to write

X̂t(x) = X0,t/2 ◦ ... ◦Xd,t/2 ◦Xd+1,t ◦ X̄d,t/2 ◦ . . . ◦ X̄1,t/2 ◦ X̄0,t/2(x).

This gives a scheme of order 2.
On the other hand, if we approximate processes Xi,t and X̄i,t with a

good high order approximation, say Y it and Ȳ it , respectively, then we can
obtain an approximate of X by

X̃t(x) = Y 0
t/2 ◦ ... ◦ Y

d
t/2 ◦ Y

d+1
t ◦ Ȳ dt/2.. ◦ Ȳ

0
t/2(x).

The semigroup associated with the process Xt is Qt in (2.7). Finally the
Monte Carlo method is given by

1

M

M∑
j=1

f((X̃1/n ◦ ... ◦ X̃1/n(x))(j)).

In the particular case that Xi,· can be solved exactly one can always take
Y is = Xi,s, s = t/2, t.

Remark 2.3. 1. If one can solve the above ODE and difference equations
1, 2 and 3 without much effort then the scheme can be implemented. But
if so, there is no reason to use the splitting method of order 2. One can
use a a higher order method that will lead to better accuracy just by using
compositions.
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2. It is very rarely the case when one can in fact solve explicitly 1, 2
amd 3 above. Usually one has to approximate the solutions of the ODE’s.
Then the order of approximation has to match the order of the semigroup
approximation method used. For example, in the above case if we use methods
of order 2 to approach the ODE’s then the order of the whole scheme will
be order 2. In this case also the definition of Q has to be changed into the
semigroup associated with the approximation process.

3. For the compounded Poisson case, we have that if λ is large, many
jumps will appear in any interval and so the calculation time will be long.
Later, we will see that we do not need to consider all the jumps in order
to obtain an approximation of order 2. This can be intuitively understood
because the probability of having two or more jumps in an interval of size t
is O(t2).

2.4.2. On the Two Basic Properties in Order to Prove the Error of Approxi-
mation. In order to find an approximation of order n, one needs to check the
two conditions mentioned in Remark 2.1. That is,

1. Qtf preserves the regularity properties of the function f .

2. (Qt − Pt)(f) = O(tn+1).

According to the operator splitting scheme explained in the previous
section, one may even verify these conditions for each of the operators used in
the decomposition. This first property when written mathematically becomes:

(H1). For fp(x) := |x|2p (p ∈ N),

Qtfp(x) ≤ (1 +Kt)fp(x) +K ′t

for K = K(T, p), K ′ = K ′(T, p) > 0.

This condition expresses the fact that Q does not alter the smoothness
properties of the function fp. The following condition expresses the fact that
Pt −Qt = O(tn+1) and therefore the resulting scheme will be of order n. To
be precise, we need to recall the definition of the functional space Cmp for
each m ∈ N and p > 0. For each function f : Rn → R in Cm, denote

‖f‖Cmp := inf{C ≥ 0 : |∂αx f(x)| ≤ C(1 + |x|p), 0 ≤ |α| ≤ m,x ∈ Rn}.

Then, denote

Cmp = {f ∈ Cm : ‖f‖Cmp <∞}.

The Property 2 above when written mathematically becomes:

(H2).
∣∣E[f(X̄t)]− E[f(Xt)]

∣∣ ≤ ‖f‖C2n
p

(1 + |x|p+n)tn+1.

Or in a more generalized form for q ≡ q(n, p) and m ≡ m(n)

|E[f(X̄t)]− E[f(Xt)]| ≤ ‖f‖Cmp (1 + |x|q)tn+1.

In Section 2.4.5, we propose an scheme and verify that conditions (H1)
and (H2) are valid in the case that

∫
|y|ν(dy) =∞.
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2.4.3. The Study of the Jump-Size Adapted Scheme Using the Operator
Splitting Method. Here we only discuss the approximation of the (d + 1)th
coordinate which corresponds to the jump process. Define for ε > 0 the finite
activity Lévy process (Zεt ) with the Lévy triple (γ, 0, νε) where the Lévy
measure νε is defined by

νε(E) = ν(E ∩ {y : |y| > ε}), E ∈ B(Rd0).

We consider the approximate SDE

Y d+1,ε
t (x) = x+

∫ t

0

h(Y d+1,ε
s− (x))(dZεs + γεds).

In this case it is clear that the order to approximation on the jumps compo-
nents is given by

E[f(Xd+1,t(x))]− E[f(Y d+1,ε
t (x))]

= t

∫
|y|≤ε

(f(x+ h(x)y)− f(x)−∇f(x)h(x)y)ν(dy) +O(t2).

By a further Taylor expansion one obtains that∫
|y|≤ε

(f(x+ h(x)y)− f(x)−∇f(x)h(x)y)ν(dy)

≈ D2f(x)h(x)⊗2
∫
|y|≤ε

|y|2ν(dy) +R

∫
|y|≤ε

|y|3ν(dy).

Therefore one sees that if ε > 0 is chosen so that
∫
|y|≤ε |y|

2ν(dy) =

Ct then (H2) is satisfied with n = 1. Furthermore, the Asmussen-Rosiński
approach [2] corresponds to the first term in the above expansion.

The verification of (H1) in this case is done in [14].

2.4.4. Approximate Small Jumps Scheme. In this section, we give an ap-
proximation scheme which uses a limited number of jumps per interval. We
assume that

∫
|y|<1

|y|ν(dy) < ∞. Then we further decompose the operator

Ld+1 defined in (2.6) as follows

Ld+1 = L1,ε
d+1 + L2,ε

d+1 + L3,ε
d+1,

L1,ε
d+1f(x) := ∇f(x)h(x)

(
γ −

∫
ε<|y|≤1

yν(dy)

)
,

L2,ε
d+1f(x) :=

∫
|y|≤ε

(f(x+ h(x)y)− f(x)−∇f(x)h(x)y)ν(dy),

L3,ε
d+1f(x) :=

∫
ε<|y|

f(x+ h(x)y)− f(x)ν(dy).

The operator L1,ε
d+1 can be exactly generated using

X̄1,ε
d+1,t = x+

(
γ −

∫
ε<|y|≤1

yν(dy)

)∫ t

0

h
(
X̄1,ε
d+1,s

)
ds.
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For L2,ε
d+1 one can use Asmussen-Rosinski (see [14]). We discuss L3,ε

d+1.

The approximation for L3,ε
d+1 is defined as follows. Let λε =

∫
|y|>ε ν(dy),

Gε(dy) = λ−1ε 1|y|>εν(dy), and let Zε ∼ Gε and let Sε be a Bernoulli random
variable independent of Zε.

X̄3,ε
d+1,t(x) =

{
x if Sε = 0,
x+ h(x)Zε if Sε = 1.

Lemma 2.4. Assume that
∣∣λ−1ε P [Sε = 1]− t

∣∣ ≤ Ct2 then∣∣∣E [f(X̄3,ε
d+1,t)

]
− f(x)− tL3,ε

d+1f(x)
∣∣∣ ≤ Ct2 ‖f‖C1

p
(1 + |x|p+1)

∫
|y|>ε

|y|ν(dy).

In [14] an approximation for L3,ε
d+1 with importance sampling and re-

striction on the number of jumps is proposed.

Remark 2.5. This approximate small jumps scheme has some advantages in
comparison with the Jump-size adapted discretization schemes presented in
Section 2.2. The first advantage is that in the former scheme we can control
the number of jumps needed to be simulated. This fact is important especially
in the case that it takes time to generate jump sizes. The second advantage
is that the former scheme can be applied for SDE driven by both Brownian
motion and jump processes while the latter scheme can be applied only for
SDE driven by pure jump processes.

An extension with at most two jumps per interval: Considering more
jumps per interval will give higher order approximations.

For L3,ε
d+1 one can do the following: Let Gε(dy) = λ−1ε 1|y|>εν(dy), λε =∫

|y|>ε ν(dy) and let Zε1 , Z
ε
2 ∼ Gε independent between themselves and let Sε1

and Sε2 be two independent Bernoulli random variables independent of Zε1 ,
Zε2 .

X̄3,ε
d+1,t(x) :=


x if Sε1 = 0,

x+ h(x)Zε1 if Sε1 = 1 and Sε2 = 0

x+ h(x)Zε1 + h(x+ h(x)Zε1)Zε2 if Sε1 = 1 and Sε2 = 1.

Denote

pε := P [Sε1 = 1] (1 + P [Sε2 = 1]) ,

qε := P [Sε1 = 1]P [Sε2 = 1] .

Lemma 2.6. Assume that
∣∣λ−1ε pε − t

∣∣ ≤ Ct3 and
∣∣2λ−2ε qε − t2

∣∣ ≤ Ct3 then∣∣∣∣E [f(X̂3,ε
d+1,t)

]
− f(x)− tL3

d+1f(x)− t2

2

(
L3
d+1

)2
f(x)

∣∣∣∣
≤ Ct3 ‖f‖C2

p
(1 + |x|p+2)

1 +

(∫
|y|>ε

|y|ν(dy)

)2
 .
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2.4.5. A Case Study. In some cases it is possible to introduce the limited
number of jumps scheme even when

∫
|y|≤1 |y|ν(dy) =∞. We suppose the one

dimensional case for simplicity. Let S be a subordinator (an increasing Lévy
process on R) with Lévy density ρ and drift γS . That is,

St = β0t+

∫ t

0

∫ ∞
0

zNS(dz, dt), β0 = γS −
∫ ∞
0

zρ(z)dz,

where NS is a Poisson random measure on [0,∞) × [0,∞) with intensity
ρ(z)dz and

β0 ≥ 0,

∫ ∞
0

(1 ∧ z)ρ(z)dz <∞. (2.9)

Let Zt = θSt + σWSt where W is a standard Brownian motion independent
of S. This is the setup in Section 2.2 in the particular case that the Lévy
process Z is a subordinate to a Brownian motion with drift. It follows from
Theorem 30.1 in [13] that Z is a Lévy process with the generating triplet
(γ,A, ν) defined as follows

A = σβ0,

ν(dy) =

∫ ∞
0

1√
2πσ2t

exp
(
− (y − θt)2

2σ2t

)
ρ(t)dtdy, (2.10)

γ = θβ0 +

∫ ∞
0

∫
|y|≤1

y√
2πσ2t

exp
(
− (y − θt)2

2σ2t

)
ρ(t)dy dt.

Let % denote the Blumenthal-Getoor index of S. That is,

% = inf{p > 0 :

∫ 1

0

zpρ(z)dz <∞}.

It follows from (2.9) that % ∈ [0, 1].

The Blumenthal-Getoor index plays an essential role in our approxi-
mation. The following result relates the Blumenthal-Getoor indices of S and
Z.

Lemma 2.7. The Blumenthal-Getoor index of S is % if and only if the
Blumenthal-Getoor index of Z is 2%.

Proof. Since the integral on [−1, 0] can be converted into an integral on [0, 1]
by doing a change of variable w = −y, for any α ∈ (0, 1), we have∫
|y|≤1

|y|2αν(dy)

=

∫ 1

0

dy

∫ ∞
0

y2α
1√

2πσ2t

[
exp

(
− (y − θt)2

2σ2t

)
+ exp

(
− (y + θt)2

2σ2t

)]
ρ(t)dt

=

∫ 1

0

dy

∫ ∞
0

y2α√
2πσ2t

exp
(
− y2 + θ2t2

2σ2t

)[
exp

(θy
σ2

)
+ exp

(
− θy

σ2

)]
ρ(t)dt.
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Since exp
(
θy
σ2

)
+ exp

(
− θy

σ2

)
≥ 2, we have∫

|y|≤1
|y|2αν(dy) ≥ 2

∫ 1

0

dy

∫ ∞
0

y2α√
2πσ2t

exp
(
− y2 + θ2t2

2σ2t

)
ρ(t)dt.

Since the integrand is non-negative, by using Fubini theorem, we have using
the change of variables z = y

σ
√
t
,∫

|y|≤1
|y|2αν(dy)

≥ Cσ2α

∫ 1

0

dt

∫ 1/(σ
√
t)

0

z2αe−z
2/2tα exp

(
− θ2t

2σ2

)
ρ(t)dz.

For each t ∈ (0, 1), one has∫ 1/(σ
√
t)

0

z2αe−z
2/2dz ≥

∫ 1/σ

0

z2αe−z
2/2dz > 0,

and exp
(
− θ2t

2σ2

)
≥ exp

(
− θ2

2σ2

)
. Hence,∫

|y|≤1
|y|2αν(dy) ≥ C

∫ 1

0

tαρ(t)dt. (2.11)

On the other hand, one has∫
|y|≤1

|y|2αν(dy)

≤ 2

∫ 1

0

dy

∫ ∞
0

y2α√
2πσ2t

exp
(
− y2 + θ2t2

2σ2t

)
exp

(θy
σ2

)
ρ(t)dt.

= 2

∫ 1

0

dy

(∫ 1

0

+

∫ ∞
1

)
y2α√
2πσ2t

exp
(
− y2 + θ2t2

2σ2t

)
exp

(θy
σ2

)
ρ(t)dt.

The second term above is less than 1√
2πσ2

exp
(
θ
σ2

) ∫∞
1
ρ(t)dt <∞ while the

first term is bounded by (using again z = y

σ
√
t
),

C

∫ ∞
0

z2αe−z
2/2dz

∫ 1

0

tαρ(t)dt ≤ C
∫ 1

0

tαρ(t)dt.

Hence ∫
|y|≤1

|y|2αν(dy) ≤ C
(
1 +

∫ 1

0

tαρ(t)dt
)
.

This fact together with (2.11) implies, for any α ∈ (0, 1),∫
|y|≤1

|y|2αν(dy) <∞⇔
∫ 1

0

tαρ(t)dt <∞.

This yields the desired result. �
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Remark 2.8. It follows from Lemma 2.7 that if the Blumenthal-Getoor index
ρ of subordinator S is bigger than 1/2, then∫

|y|≤1
|y|ν(dy) =∞.

The following simple observation plays an important role in the next
discussion.

Lemma 2.9. Suppose that % ∈ (0, 1) and
∫∞
1
tρ(t)dt <∞, then∣∣∣ ∫

|y|≤1
yν(dy)

∣∣∣ <∞.
Proof. We have∫
|y|≤1

yν(dy)

=

∫ 1

0

dy

∫ ∞
0

y√
2πσ2t

exp
(
− y2 + θ2t2

2σ2t

)[
exp

(θy
σ2

)
− exp

(
− θy

σ2

)]
ρ(t)dt,

Hence as ex−e−x ≤ 2xex for x ∈ [0, 1] and for each β > 0, supx>0 x
βe−x <∞,

we obtain∣∣∣ ∫
|y|≤1

yν(dy)
∣∣∣

≤ 2

∫ 1

0

dy

∫ ∞
0

y√
2πσ2t

exp
(
− y2 + θ2t2

2σ2t

) |θ|y
σ2

exp
( |θ|y
σ2

)
ρ(t)dt

≤ C
∫ 1

0

dy

∫ ∞
0

( y2

2σ2t

)1+δ/2
exp

(
− y2

2σ2t

)
y−δt(δ+1)/2ρ(t)dt

≤ C
∫ 1

0

y−δdy

∫ ∞
0

t(δ+1)/2ρ(t)dt <∞,

for some constant δ ∈ (2%−1, 1) where C is a positive constant that depends
on σ2. �

Throughout the rest of this section, we suppose that % < 1. Then we can
rewrite γ = θβ0 +

∫
|x|≤1 xν(dx). We decompose the operator Ld+1 defined

in (2.6) by Ld+1 = L1
d+1 + L2

d+1, where

L1
d+1f(x) := θβ0h(x)f ′(x),

L2
d+1f(x) :=

∫
R

(
f(x+ h(x)y)− f(x)

)
ν(dy). (2.12)

The operator L1
d+1 can be exactly generated using

X
1

d+1,t(x) = x+ θβ0

∫ t

0

h(X
1

d+1,s(x))ds,

as before. The approximation for L2
d+1 is defined as follows: For some

ε ∈ (0, 1) which will be specified later, let Hε(x) = C−1ε 1x>ερ(x), Cε =
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∫∞
ε
ρ(x)dx and ζε =

∫ ε
0
xρ(x)dx. Furthermore let Sε be a Bernoulli random

variable with pi = P[Sε = i], i = 0, 1. We define

X
2,ε

t (x) =

{
x+ h(x)

(
ζεtθ + σ

√
ζεtZ

)
if Sε = 0,

x+ h(x)
(
ζεtθ + θUε + σ

√
ζεt+ UεZ

)
if Sε = 1,

where Z is a standard normal random variable and Uε is a random variable
with density function Hε. We suppose that Z, Uε, Sε and W are mutually
independent. Throughout this section we assume without loss of generality
that t ≤ 1.

We need the following auxiliary estimate.

Lemma 2.10. For any %0 ∈ (%, 1), there exists a positive constant C(%0) which
does not depend on ε such that for any ε ∈ (0, 1),

ζε ≤ C(%0)ε1−%0 , (2.13)

Cε =

∫ ∞
ε

ρ(z)dz ≤ C(%0)ε−%0 , (2.14)∫ ∞
ε

√
zρ(z)dz ≤ C(%0)(1 + ε1/2−ρ0), (2.15)∫ ε

0

z3/2ρ(z)dz ≤ C(%0)ε3/2−%0 , (2.16)

Proof. Because %0 ∈ (%, 1), there exists a positive constant C0 = C(%0) such
that ∫ 1

0

z%0ρ(z)dz < C0.

Hence one has the following estimate for ζε,

ζε =

∫ ε

0

zρ(z)dz =

∫ ε

0

z1−%0z%0ρ(z)dz ≤ ε1−%0
∫ ε

0

z%0ρ(z)ds ≤ C0ε
1−%0 .

Next one has,∫ ∞
ε

ρ(z)dz =

∫ 1

ε

ρ(z)dz +

∫ ∞
1

ρ(z)dz ≤
∫ 1

ε

(z
ε

)%0
ρ(z)dz +

∫ ∞
1

ρ(z)dz

≤ C0ε
−%0 +

∫ ∞
1

ρ(z)dz ≤ C1ε
−%0 ,

where C1 = C0 +
∫∞
1
ρ(z)dz <∞ since ε < 1 and

∫∞
1
ρ(z)dz <∞. A similar

calculation gives (2.15).
Finally, one has that as %0 <

3
2 ,∫ ε

0

z3/2ρ(z)dz =

∫ ε

0

z−%0+3/2z%0ρ(z)dz ≤ C0ε
−%0+3/2.

�

The following lemma will be used to justify condition (H2).
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Lemma 2.11. Assume that f ∈ C4
p for some p > 1, P[Sε = 1] = Cεt < 1

and
∫∞
1
zp+2ρ(z)dz < ∞, then for each %0 ∈ (%, 1), there exists a positive

constant C(%0) which does not depend on ε and t such that∣∣E[f(X
2,ε

t (x)
]
− f(x)− tL2

d+1f(x)
∣∣

≤ C(%0)(1 + |x|p+4)‖f‖C4
p

(
t3/2ε3(1−%0)/2 + t2ε3/2−2%0 + t2ε1−%0 + tε3/2−%0

)
(2.17)

Proof. Before, we start the proof, we remind the reader the properties that
will be used repeatedly without further mention. These are: 1. sup0<ε<1 ζε <
∞ and ζε → 0 as ε→ 0. 2. |h(x)|q ≤ C(1 + |x|q) and 3. sup0<ε<1 Cεt ≤ 1.

1) First we expand E
[
f(X

2,ε

t (x))
]
− f(x). Set pi = P[Sε = i], i = 0, 1.

Using Taylor’s expansion, one has

E
[
f(X

2,ε

t (x))
]
− f(x)

=p0

∫
R

e−y
2/2

√
2π

h(x)(ζεtθ + σ
√
ζεty)

∫ 1

0

f ′(x+ uh(x)(ζεtθ + σ
√
ζεty))du dy

+ C−1ε p1

∫
R

e−y
2/2

√
2π

∫ ∞
ε

h(x)(ζεtθ + θz + σ
√
ζεt+ zy)ρ(z)

×
∫ 1

0

f ′(x+ uh(x)(ζεtθ + θz + σ
√
ζεt+ zy))du dz dy

=I1 + I2.

Using Taylor’s expansion again, I1 becomes

I1 =p0

∫
R

e−y
2/2

√
2π

h(x)(ζεtθ + σ
√
ζεty)f ′(x)dy

+ p0

∫
R

e−y
2/2

√
2π

h(x)2(ζεtθ + σ
√
ζεty)2

∫ 1

0

du

×
∫ 1

0

uf ′′(x+ uvh(x)(ζεtθ + σ
√
ζεty))dv dy

=p0h(x)f ′(x)ζεtθ

+
p0
2
h(x)2

∫
R

e−y
2/2

√
2π

ζεtσ
2y2f ′′(x) dy

+ p0h(x)3
∫
R

e−y
2/2

√
2π

ζεtσ
2y2(ζεtθ + σ

√
ζεty)

∫ 1

0

du

∫ 1

0

dv∫ 1

0

u2vf ′′′(x+ uvwh(x)(ζεtθ + σ
√
ζεty))dw dy
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+ p0h(x)2
∫
R

e−y
2/2

√
2π

((ζεtθ)
2 + 2σθy(ζεt)

3/2)

∫ 1

0

du

×
∫ 1

0

uf ′′(x+ uvh(x)(ζεtθ + σ
√
ζεty))dv dy

=I11 + I12 + I13 + I14, (2.18)

where the second equation is obtained by writing (ζεtθ+σ
√
ζεty)2 = σ2y2ζεt+

((ζεtθ)
2 + 2σθy(ζεt)

3/2) and using the fact that
∫
R ye

−y2/2dy = 0.

The second term I12 can be rewritten as

I12 =
p0
2
ζεtσ

2h(x)2f ′′(x). (2.19)

Since f ∈ C4
p , one can show that

|I13| ≤ C(ζεt)
3/2‖f‖C4

p

∫
R
e−y

2/2y2(1 + |x|3)(
√
ζεt+ y)

∫ 1

0

du

∫ 1

0

dv

×
∫ 1

0

u2v(1 + |x|p)
(

1 + upvp
(
(ζεt)

p + (ζεt)
p/2yp

))
dwdy

≤ C(1 + |x|p+3)‖f‖C4
p
(ζεt)

3/2.

It follows from (2.13) that

|I13| ≤ C(%0)(1 + |x|p+4)‖f‖C4
p
t3/2ε3(1−%0)/2.

After using a similar argument for I14, we finally get

|I13|+ |I14| ≤ C(%0)(1 + |x|p+4)‖f‖C4
p
t3/2ε3(1−%0)/2. (2.20)

Furthermore, one has

I2 =th(x)2
∫
R
dy
e−y

2/2

√
2π

∫ ∞
ε

(ζεtθ + θz + σ
√
ζεt+ zy)2ρ(z)

∫ 1

0

du

∫ 1

0

u

× f ′′(x+ uvh(x)(ζεtθ + θz + σ
√
ζεt+ zy))dv dz

+ th(x)f ′(x)

∫
R
dy
e−y

2/2

√
2π

∫ ∞
ε

(ζεtθ + θz + σ
√
ζεt+ zy)ρ(z)dz.

In the first integral, we decompose (ζεtθ + θz + σ
√
ζεt+ zy)2 = (ζεtθ)

2 +
2ζεtθ(θz + σ

√
ζεt+ zy) + (θz + σ

√
ζεt+ zy)2 to define I21, I22 and I23; and

in the second integral, θz together with ζεtθ define I24 and I25, respectively.
Note that, the last integral corresponding to σ

√
ζεt+ z is zero. In detail, we

write

I2 =

5∑
i=1

I2i,
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where

I21 = th(x)2
∫
R
dy
e−y

2/2

√
2π

∫ ∞
ε

(ζεtθ)
2ρ(z)

∫ 1

0

du

×
∫ 1

0

uf ′′(x+ uvh(x)(ζεtθ + θz + σ
√
ζεt+ zy))dv dz,

I22 = th(x)2
∫
R
dy
e−y

2/2

√
2π

∫ ∞
ε

2ζεtθ(θz + σ
√
ζεt+ zy)ρ(z)

∫ 1

0

du

∫ 1

0

u

× f ′′(x+ uvh(x)(ζεtθ + θz + σ
√
ζεt+ zy))dv dz,

I23 = th(x)2
∫
R
dy
e−y

2/2

√
2π

∫ ∞
ε

(θz + σ
√
ζεt+ zy)2ρ(z)

∫ 1

0

du

∫ 1

0

u

× f ′′(x+ uvh(x)(ζεtθ + θz + σ
√
ζεt+ zy))dv dz,

I24 = th(x)f ′(x)θ

∫ ∞
ε

zρ(z)dz,

and

I25 = t2ζεθh(x)f ′(x)

∫ ∞
ε

ρ(z)dz = p1tζεθh(x)f ′(x).

We have

I11 + I25 + I24 = th(x)f ′(x)θ

∫ ∞
0

zρ(z)dz. (2.21)

Since f ∈ C4
p and % < 1, one gets∫ ∞

ε

zqρ(z)dz ≤
∫ 1

0

zρ(z)dz +

∫ ∞
1

zp+2ρ(z)dz <∞,

for all 1 ≤ q ≤ p+ 2. Furthermore, one has

|I21| ≤ Ct3ζ2ε (1 + x2)‖f‖C4
p

∫
R
dye−y

2/2

∫ ∞
ε

ρ(z)

∫ 1

0

du

×
∫ 1

0

u
(

1 + |x|p + upvp(1 + |x|p)
(
tp + zp + (zp/2 + (ζεt)

p/2)yp
))
dv dz

≤ Ct3ζ2ε (1 + |x|p+2)‖f‖C4
p

∫ ∞
ε

(1 + zp)ρ(z)dz.

≤ C(1 + |x|p+2)‖f‖C4
p
Cεt

3ζ2ε

≤ C(1 + |x|p+2)‖f‖C4
p
t2ζ2ε .

The last inequality follows from the fact that p1 = Cεt ≤ 1. It then follows
from (2.13) that

|I21| ≤ C(%0)(1 + |x|p+4)‖f‖C4
p
t2ε1−%0 .
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By a similar argument, one has

|I22| ≤ Ct2ζε(1 + |x|p+2)‖f‖C4
p

(∫ ∞
ε

(
√
z + zp+1)ρ(z)dz +

√
tζε

∫ ∞
ε

ρ(z)dz
)

≤ Ct2ζε(1 + |x|p+2)‖f‖C4
p

(
1 +

∫ ∞
ε

√
zρ(z)dz + Cε

√
tζε

)
≤ C(1 + |x|p+2)‖f‖C4

p

(
t2ζε

∫ ∞
ε

√
zρ(z)dz + (tζε)

3/2 + t2ζε

)
.

It follows from (2.13) and (2.15) that

|I22| ≤ C(1 + |x|p+2)‖f‖C4
p

(
t2ε1−%0 + t2ε3/2−2%0 + t3/2ε3(1−%0)/2

)
. (2.22)

Next, by applying Taylor’s expansion for f ′′, one gets I23 = I23a+I23b, where

I23a = th(x)2f ′′(x)

∫
R
dy
e−y

2/2

2
√

2π

∫ ∞
ε

(θz + σ
√
ζεt+ zy)2ρ(z)dz, (2.23)

and

I23b = th(x)3
∫
R

e−y
2/2

√
2π

∫ ∞
ε

(θz + σ
√
ζεt+ zy)2(ζεtθ + θz + σ

√
ζεt+ zy)ρ(z)

×
∫ 1

0

du

∫ 1

0

u2v

∫ 1

0

f ′′′(x+ uvwh(x)(ζεtθ + θz + σ
√
ζεt+ zy))dw dv dz dy.

(2.24)

2) Next, we expand L2
d+1f(x). It follows from (2.10) and (2.12) and Taylor’s

expansion for f that

L2
d+1f(x)

= h(x)

∫
R
y

∫ 1

0

f ′(x+ uh(x)y)du

∫ ∞
0

1√
2πσ2z

exp
(
− (y − θz)2

2σ2z

)
ρ(z)dz dy

= h(x)

∫
R

∫ ∞
0

(θz + σ
√
zy)

∫ 1

0

f ′(x+ uh(x)(θz + σ
√
zy))du

e−y
2/2

√
2π

ρ(z)dzdy

= h(x)2
∫
R
dy
e−y

2/2

√
2π

(∫ ε

0

+

∫ ∞
ε

)
(θz + σ

√
zy)2

∫ 1

0

du

×
∫ 1

0

uf ′′(x+ uvh(x)(θz + σ
√
zy))dvρ(z)dz

+ h(x)f ′(x)θ

∫ ∞
0

zρ(z)dz

= J1 + J2 + J3,
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where the second equation follows by using an appropriate change of vari-
ables. By applying Taylor’s expansion for f ′′, one gets J2 = J21 + J22, where

J21 = h(x)2
∫
R
dy
e−y

2/2

√
2π

∫ ∞
ε

(θz + σ
√
zy)2

∫ 1

0

du

∫ 1

0

uf ′′(x)dvρ(z)dz

= h(x)2f ′′(x)

∫
R
dy
e−y

2/2

2
√

2π

∫ ∞
ε

(θz + σ
√
zy)2ρ(z)dz, (2.25)

and

J22 = h(x)3
∫
R
dy
e−y

2/2

√
2π

∫ ∞
ε

(θz + σ
√
zy)3

∫ 1

0

du

∫ 1

0

u2v

×
∫ 1

0

f ′′′(x+ uvwh(x)(θz + σ
√
zy))dwdvρ(z)dz. (2.26)

Next, we write (θz+σ
√
zy)2 = σ2y2z+ (θ2z2 + 2σθyz3/2) and after applying

Taylor’s expansion for f ′′, we get

J1 =σ2h(x)2f ′′(x)

∫
R
y2
e−y

2/2

2
√

2π
dy

∫ ε

0

zρ(z)dz

+ σ2h(x)3
∫
R
y2
e−y

2/2

√
2π

∫ ε

0

ρ(z)

∫ 1

0

du

∫ 1

0

u2v(θz + σ
√
zy)3

×
∫ 1

0

f ′′′(x+ uvwh(x)(θz + σ
√
zy))dw dv dz dy

+ h(x)2
∫
R
dy

∫ ε

0

dz(θ2z2 + 2θσyz3/2)ρ(z)
e−y

2/2

√
2π

∫ 1

0

du

×
∫ 1

0

uf ′′(x+ uvh(x)(θz + σ
√
zy))dv

=J11 + J12 + J13.

Using a similar argument as before, one has

|J12|+ |J13| ≤ C(1 + |x|p+3)‖f‖C4
p

∫ ε

0

z3/2ρ(z)dz.

Therefore, it follows from (2.16) that

|J12|+ |J13| ≤ C(%0)(1 + |x|p+4)‖f‖C4
p
ε3/2−%0 . (2.27)

3) Now we compare the factors of E
[
f(X

2,ε

t (x))
]
−f(x) and L2

d+1f(x). First,
it follows from (2.21) that

I11 + I25 + I24 = tJ3. (2.28)

And it follows from (2.19) that

tJ11 − I12 =
1

2
σ2p1tζεh(x)2f ′′(x). (2.29)
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Next, it follows from (2.23) and (2.25) that

I23a − tJ21

= th(x)2f ′′(x)

∫
R
dy
e−y

2/2

2
√

2π

∫ ∞
ε

(
σ2ζεty

2 + 2θσz(
√
z + ζεt−

√
z)y
)
ρ(z)dz,

hence as p1 = Cεt it follows from the above and (2.29)

I23a + I12 = t(J11 + J21). (2.30)

Next, we compare I23b and J22. It follows from (2.24) and (2.26) that I23b −
tJ22 = K1 +K2, where

K1 = th(x)3
∫
R
dy

∫ ∞
ε

(
(θz + σ

√
ζεt+ zy)2(ζεtθ + θz + σ

√
ζεt+ zy)

− (θz + σ
√
zy)3

)
ρ(z)

∫ 1

0

du

∫ 1

0

u2v

×
∫ 1

0

e−y
2/2

√
2π

f ′′′(x+ uvwh(x)(ζεtθ + θz + σ
√
ζεt+ zy))dw dv dz,

and

K2 =th(x)3
∫
R
dy

∫ ∞
ε

(θz + σ
√
zy)3ρ(z)

∫ 1

0

du

∫ 1

0

dv

∫ 1

0

dw u2v
e−y

2/2

√
2π

×
(
f ′′′(x+ uvwh(x)(ζεtθ + θz + σ

√
ζεt+ zy)

− f ′′′(x+ uvwh(x)(ζεtθ + θz + σ
√
zy))

)
dz.

We rewrite K1 = K11 +K12, where

K11 = t2ζεθh(x)3
∫
R
dy

∫ ∞
ε

(θz + σ
√
ζεt+ zy)2ρ(z)

∫ 1

0

du

∫ 1

0

u2v

×
∫ 1

0

e−y
2/2

√
2π

f ′′′(x+ uvwh(x)(ζεtθ + θz + σ
√
ζεt+ zy))dw dv dz,

and

K12 = th(x)3
∫
R
dy

∫ ∞
ε

(
(θz + σ

√
ζεt+ zy)3 − (θz + σ

√
zy)3

)
ρ(z)

∫ 1

0

du

×
∫ 1

0

u2v

∫ 1

0

e−y
2/2

√
2π

f ′′′(x+ uvwh(x)(ζεtθ + θz + σ
√
ζεt+ zy))dw dv dz.

By using a similar argument as before, we have

|K11| ≤ C(1 + |x|p+3)‖f‖C4
p
ζεt

2

∫ ∞
ε

(ζεt+ z + zp+2)ρ(z)dz

≤ C(1 + |x|p+3)‖f‖C4
p
ζεt

2(1 + Cεζεt)

≤ C(%0)(1 + |x|p+4)‖f‖C4
p
t2ε1−%0 ,
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where the last inequality follows from the fact that Cεt ≤ 1 and (2.13). Next,
we will estimate K12. First, we have

(θz + σ
√
ζεt+ zy)3 − (θz + σ

√
zy)3

= σy(
√
ζεt+ z −

√
z)
(
(θz + σ

√
ζεt+ zy)2 + (θz + σ

√
ζεt+ zy)(θz + σ

√
zy)

+ (θz + σ
√
zy)2

)
≤ Cy(

√
ζεt+ z −

√
z)(z2 + y2z + y2ζεt).

Furthermore, since∫ ∞
ε

(
√
ζεt+ z −

√
z)zρ(z)dz ≤ ζεt

∫ ∞
ε

zρ(z)√
ζεt+ z +

√
z
dz ≤

≤ ζεt
∫ ∞
ε

√
zρ(z)dz,∫ ∞

ε

(
√
ζεt+ z −

√
z)ρ(z)dz ≤

√
tζε

∫ ∞
ε

ρ(z)dz = Cε
√
tζε,

and for all q ≥ 3/2,∫ ∞
ε

(
√
ζεt+ z −

√
z)zqρ(z)dz ≤ ζεt

∫ ∞
ε

zq−1/2ρ(z)dz ≤ Cζεt,

we have

|K12| ≤ C(1 + |x|p+3)‖f‖C4
p
t2ζε

(
1 + Cε(ζεt)

1/2 +

∫ ∞
ε

√
zρ(z)dz

)
≤ C(1 + |x|p+3)‖f‖C4

p

(
t2ζε + (ζεt)

3/2 + t2ζε

∫ ∞
ε

√
zρ(z)dz

)
≤ C(1 + |x|p+4)‖f‖C4

p

(
t2ε1−%0 + t3/2ε3(1−%0)/2 + t2ε3/2−2%0

)
, (2.31)

where the last inequality follows from (2.13)–(2.15). Now we estimate K2.
Since f ∈ C4

p , for any u, v ∈ R, one has |f ′′′(u)−f ′′′(v)| ≤ C‖f‖C4
p
|u−v|(1+

|u|p + |v|p), hence

|K2| ≤Ct|h(x)|4‖f‖C4
p

∫
R
dy

∫ ∞
ε

|(θz + σ
√
zy)3y|(

√
z + ζεt−

√
z)ρ(z)

×
∫ 1

0

du

∫ 1

0

dv

∫ 1

0

dwu2v
e−y

2/2

√
2π

uv

×
(

1 + |x|p + upvpwp(1 + |x|p)
(
ζpε t

p + zp + (zp/2 + ζp/2ε tp/2)yp
))
dz

≤Ch(x)4‖f‖C4
p
t2ζε

∫
R
dy

∫ ∞
ε

|yz(
√
z + y)3|ρ(z)

×
∫ 1

0

du

∫ 1

0

dv

∫ 1

0

dw u2v
e−y

2/2

√
2π

uv

×
(

1 + |x|p + upvpwp(1 + |x|p)
(
ζpε t

p + zp + (zp/2 + ζp/2ε tp/2)yp
))
dz.
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Therefore

|K2| ≤ C(1 + |x|p+4)‖f‖C4
p
t2ζε

∫ ∞
ε

zρ(z)dz

≤ C(1 + |x|p+4)‖f‖C4
p
t2ε1−%0 , (2.32)

since
∫∞
ε
zρ(z)dz <∞.

4) Finally, it follows from (2.20), (2.22), (2.27), (2.28) and (2.30)-(2.32) that
for any %0 ∈ (%, 1), there exists a positive constant C(%0) which does not
depend on ε such that∣∣E[f(X

2,ε

t (x)
]
− f(x)− tL2

d+1f(x)
∣∣

≤ C(%0)(1 +|x|p+4)‖f‖C4
p

(
t3/2ε3(1−%0)/2 + t2ε3/2−2%0 + t2ε1−%0 +tε3/2−%0

)
,

this implies (2.17). �

Next, the parameter ε should be chosen in order to obtain the best
bound in (2.17). After a simple calculation, we have the following result.

Lemma 2.12. Assume that f ∈ C4
p and

∫∞
1
zp+2ρ(z)dz < ∞. For each %0 ∈

(%, 1), if we choose ε = O(t1/%0) and such that Cεt < 1, then there exists a
positive constant C(%0) which does not depend on ε and t such that∣∣E[f(X

2,ε
t (x)

]
− f(x)− tL2

d+1f(x)
∣∣ ≤ C(%0)(1 + |x|p+4)‖f‖C4

p
(t1+1/%0 + t3/(2ρ0)).

This result shows that if ε = O(t1/ρ0) and Cεt < 1 then the analog of
(H2) will be satisfied (n = 1 if ρ ≥ 1/2 and n = 2 if ρ < 1/2). We also remark
that the fact that ε = κ0t

1/ρ0 together with Cεt < 1 results on a choice for
κ0.

The next lemma verifies condition (H1) which corresponds to the as-
sumption (M) in [14].

Lemma 2.13. Assume that P[Sε = 1] = Cεt < 1. Then for any p ≥ 2 such
that

∫∞
1
zpρ(z)dz <∞, there exist constants K and K ′ satisfying

E
[
|X2,ε

t (x)|p
]
≤ (1 +Kt)|x|p +K ′t.

Proof. We first denote f(x) = |x|p and write E[f(X̄2,ε
t (x)] − f(x) = I1 + I2

as in the first part of the proof of Lemma 2.11. We need to show that

|I1|+ |I2| ≤ ct(1 + |x|p), ∀x ∈ R.
It follows from (2.18) that

|I1| ≤ tζεpθ|h(x)||x|p−1
∫
R

e−y
2/2

√
2π

dy

+ tζεp(p− 1)h(x)2
∫
R

e−y
2/2

√
2π

(
√
ζεtθ + σy)2

∫ 1

0

du

×
∫ 1

0

u|x+ uvh(x)(ζεtθ + σ
√
ζεty)|p−2dvdy.
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Since |h(x)| ≤ C(1 + |x|), we get

|I1| ≤ Ctζε(1 + |x|p)
≤ Ct(1 + |x|p),

since ζε is bounded. It remains to bound I2. Since C−1ε p1 = t, we have

I2 ≤ tp
∫
R

e−y
2/2

√
2π

∫ ∞
ε

|h(x)|(ζεtθ + θz + σ
√
ζεt+ z|y|)ρ(z)

×
∫ 1

0

|x+ uh(x)(ζεtθ + θz + σ
√
ζεt+ zy)|p−1dudzdy.

And it follows from (2.13) that

|I2| ≤ Ct(1 + |x|p)
(

1 +

∫ ∞
ε

zpρ(z)dz
)

≤ Ct(1 + |x|p),

since Cεt < 1 and
∫∞
ε
zpρ(z)dz ≤

∫ 1

0
zρ(z)dz +

∫∞
1
zpρ(z)dz <∞. �

Finally, the rate of convergence of our scheme can be established by
following the guide in Section 2.4.2 under appropriate regularity conditions.

3. Numerical Study

In our numerical study, we concentrate on examples from three points of
view.

• Lévy measures with different values of the Blumenthal-Getoor index.
• Different types of expectations. That is, to consider the calculation of
E[f(X1)] for different functions f .
• Different types of SDE’s (different types of coefficients). In particular,

we consider oscillating type of coefficients sin(ax) for different values of
a.

In some of the cases considered, the theory provided so far does not tell us
the theoretical rate of convergence. Still, by doing the simulations one can
learn that the proposed methods still apply and points to further possible
theoretical extensions of these methods.

3.1. Example 1: Weak Approximation for an SDE Driven by a Tempered
Stable Lévy Process

Let Z be a tempered stable Lévy process with Lévy measure ν defined on R
by

ν(dy) =
1

|y|α+1

(
c+e
−λ+|y|1y>0 + c−e

−λ−|y|1y<0

)
dy.
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3.1.1. We consider the following one dimensional SDE

dXt = sin(aXt−)dZt, X0 = 1.

We will estimate E[f(X1)] with f(x) = 2−2 cos(x−X0) using various schemes
mentioned in the last section.

We choose the parameter values a = 1.0, λ+ = 1.0, c+ = 1, γ = 1
and c− = 0. Figures 1 and 2 present the Monte Carlo estimators and the
corresponding variances obtained by using various schemes with the jump
index Blumenthal-Getoor α = 0.1 and α = 0.9, respectively. The symbols
ES, JSAS, 1JS and 2JS stand for Euler scheme (Section 2.1), Jump size
adapted scheme (Section 2.2), One jump scheme (Section 2.4.4) and Two
jump scheme (Section 2.4.4), respectively.

In the case that these schemes use the Asmussen-Rosiński approxima-
tion for small jumps, we append in parentheses “AR” to their symbols.

In the following, we provide some detailed information about each
scheme and compute their theoretical computational costs. To be precise,
we fix the error of the estimate at a level ε0 and compute the expected com-
putational cost, which is needed asymptotically in order to reach this level of
error in the weak sense, with respect to ε0. As usual, these calculations are
exact up to constants.

First, we remark that in any scheme, if needed, we will always use
the RK4 method (Runge-Kutta scheme of order 4) to solve the ode dxt =
sin(axt)dt (see [4]) if needed.

1. Euler scheme without AR-correction: We use the scheme presented in
page 187 [5] to generate Z. The method consists of simulating the big
jumps and replacing the small ones with their expectation.

Fixed a jump threshold level ε > 0, then we approximate Z by
a compound Poisson process Zε which has finite Lévy measure with
density

νε(y) =
1

|y|α+1

(
c+e
−λ+|y|1y>ε + c−e

−λ−|y|1y<−ε
)
.

Hence Z has intensity λε =
∫
R ν

ε(y)dy, and jump size distribution
pε(x) = νε(x)/λε. The jump size distribution can be simulated by using
the acceptance-rejection method. It has been shown in [5] that the av-
erage number of loops needed to generate one random variable tends to
1 when ε→ 0. Hence the computational cost to generate Zε is propor-
tional to λε = O(ε−α). Therefore considering that there are t−1 time
partition points, we obtain a total cost of t−1 + ε−α.

On the other hand, the order of convergence of this scheme is

t+

∫
|y|≤ε

|y|2ν(dy) ≈ t+ ε2−α.

If we choose t = ε2−α = ε0 then the computational cost to reach to error
of level ε0 is ( 1

ε0
)1∨(α/(2−α)). One should remark that this computational
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cost blows up when α→ 2 even if the error level ε0 stays constant and
sufficiently small.

2. Euler scheme with AR-correction: The increment of Z is generated as
before with a modification: we replace the small jumps by a Brownian
motion with the same local mean and variance as explained in Section
2.2.

The order of convergence of this scheme is

t+

∫
|y|≤ε

|y|3ν(dy) ≈ t+ ε3−α.

As before, if we choose t = ε3−α = ε0 then the computational cost to
reach to error of level ε0 is ( 1

ε )1∨(α/(3−α)).

3. JSAS without AR-correction: The approximated solution X̂ is defined
inductively as follow: X̂(0) = X0 and for i ≥ 0,

X̂(T εi+1−) = θ
(
γε(T

ε
i+1 − T εi ); X̂(T εi )

)
,

X̂(T εi+1) = X̂(T εi+1−) + h(X̂(T εi+1−))∆Z(T εi+1).

For an arbitrary point t, we define

X̂(t) = θ
(
γε(t− ηt); X̂(ηt)

)
,

where ηt = sup{T εi : T εi ≤ t}.
Although this scheme was not directly studied in [8]. The same

ideas give that the error is of the order ε2−α. Therefore the computa-
tional cost to reach to error of level ε0 is ( 1

ε0
)

α
2−α .

Now we introduce the cost for the schemes with limited number
of jumps. Recall that for these schemes, we only consider the case that
α < 1.

4. JSAS with AR-correction: The computational cost is proportional to
λε =

∫
|y|>ε ν(dy) = O(ε−α).

The order of convergence of this scheme is

σ2
ε

λε
(σ2
ε + |γε|) +

∫
|y|≤ε

|y|3χ̄εν(dy) = ε2∧(3−α).

Hence, the computational cost to reach to error of level ε0 is

ε
−α/(2∧(3−α))
0 .

5. 1JS without AR-correction: The weak error of this scheme is pro-
portional to t + ε2−α. Therefore, the optimal choice of parameters is
t = ε2−α = ε0. The computational cost is proportional to t−1. On the
other hand, if we choose t = κε2−α, where the positive κ is small enough
such that P[Sε = 1] = λεt < 1, then the computational cost to reach an
error of level ε0 is ε−10 .

6. 1JS with AR-correction: In this case the weak error is of the order
t + ε3−α. Then the calculation of cost follows as in the previous case,
which gives a computational cost of ε−10 . The main difference with the
previous scheme is that fitting the side condition P[Sε = 1] = λεt < 1



Weak Approximations for SDE’s Driven by Lévy Processes 161

becomes easier. In fact, we choose ε = ( tκ )1/α, where the positive κ is

small enough such that P[Sε = 1] = κεαλε = κεα
∫
|y|>ε ν(dy) < 1, then

the scheme is of order 1.
7. 2JS without AR-correction: The weak error is of order t2 + ε2−α if the

side conditions stated in Lemma 2.6 are satisfied.
In this case, one needs to consider a non-regular choice of parame-

ters due to these side conditions. In fact, besides the condition that the
weak error has to be of order ε0 one also needs to have that λεt < 2.
This raises an optimization problem which one can solve easily. The
solution is to take t = κεα∨(1−

α
2 ), where the positive κ is small enough

such that P[Sε1 = 1] = λεt− λ2
εt

2

2 < 1 and P[Sε2 = 1] = λεt
2−λεt < 1.

This choice gives a final computational cost of ( 1
ε0

)
1
2∨

α
2−α .

8. 2JS with AR-correction: In this case the optimization problem that
appeared in the previous case is simplified due to the higher weak rate
of convergence and one may choose t = κεα, where the positive κ is small

enough such that P[Sε1 = 1] = λεt− λ2
εt

2

2 < 1 and P[Sε2 = 1] = λεt
2−λεt < 1,

then the scheme is of order t2. The computational cost to reach to error

of level ε0 is ε
−1/2
0 .

Putting this information on a table for the case α < 1, we obtain

method ES ES(AR) JSAS JSAS(AR)

cost ε−10 ε−10 (ε0)−
α

2−α ε
−α/2
0

t ε2−α ε3−α – –

ε ε
1

2−α
0 ε

1
3−α
0 ε

1
2−α
0 ε

1
2
0

N t−1 t−1 λε λε
method 1JS 1JS(AR) 2JS 2JS(AR)

cost ε−10 (ε0)−
1
2∨

α
2−α ε−10 ε

−1/2
0

t ε2−α εα εα∨(1−
α
2 ) εα

ε ε
1

2−α
0 ε

1
3−α
0 ε

1
2−α
0 ε

1
3−α
0

N t−1 t−1 t−1 t−1

From this table one can deduce that the JSAS methods have the low-
est theoretical expected computational cost while the Euler scheme methods
perform the worst.

This table assumes the general situation where one does not have infor-
mation of how to generate the increments of the Lévy process exactly.

Let us now procceed with the experimental results. The estimator and
variance of each scheme is plotted as a function of log(N) where N is the num-
bers of discretization points n between 0 and 1. The parameter λε appearing
in the JSAS method is chosen equal to N in order to allow for comparison of
computational cost.

We have decided to use this as it would seem the most natural measure
of computational time. The only case where this will differ with theoretical
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Figure 1. Numerical comparison of various schemes for es-
timating E[f(X1)] with α = 0.1. (Left: mean, right: variance)

Figure 2. Numerical comparison of various schemes for es-
timating E[f(X1)] with α = 0.9. (Left: mean, right: variance)

computational time is in the case of the Euler scheme when all jumps have
to be simulated.

For each point, we simulated 106 trajectories. In Figures 1 and 2, we see
the convergence and the variance of each estimator. The computational times
with respect to the case log(N) = 6 are shown in Figure 3. This figure shows
that the theoretical computational estimates are not necessarily accurate at
this level and shows the difference of the constants in the asymptotic esti-
mates. For example, the increase of computational time for the Euler scheme
from α = 0.1 to α = 0.9 is due to the increase in the number of jumps. Even
more, the fact that the JSAS schemes have a random number of partitions
seems to play an important role in the computational time. In fact, asymp-
totically speaking, the number of calculations needed is a Poisson random
variable with mean λε which behaves like a Gaussian r.v. with variance pro-
portional to λε. From this figure, we can also see the increasing dependence
of these constants with respect to the value of α.

Next, we perform the same simulation as above but with a different
value of parameter a. More precisely, we choose a = 5.0, λ+ = 1.0, α =
0.9, c+ = 1, γ = 1 and c− = 0. The results are presented in Figures 4 and 5.

The conclusion is that in general the 1JS method is fast and gives good
results for coefficients that do not oscillate too much. This contrasts with the
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Figure 3. Computation time taken in the estimation of E[f(X1)]

Figure 4. Numerical comparison of various schemes for es-
timating E[f(X1)] with a = 5.0. (Left: mean, right: variance)

Figure 5. Computation time taken in the estimation of
E[f(X1)] with respect to log(N) = 6

theoretical results shown in the previous table. This seems to be caused by
the size of the constants in the error expansions.

If the coefficients have rapidly growing derivatives then the method
looses accuracy and one may better use the JSAS method which may be time
consuming. In between these two methods one has the 2JS method. Therefore
a practical issue is how to determine before implementing the method which
one should use and the range of applicability of each method.

3.1.2. The approximation schemes presented in Section 2 are only applicable
for smooth functions f . However, in the next simulation, we will use this
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Figure 6. Numerical comparison of various schemes for es-
timating P[X1 > 2]

scheme to estimate the probability P(X1 > x0), or in other words, to estimate
the expectation E(f(X1)) with f(x) = 1x>x0

.
We choose a = 5.0, λ+ = 0.5, α+ = 0.9, c+ = 1, γ = 1 and c− = 0. The

results are presented in Figure 6. This study reveals that one may need to
use an importance sampling method in order to improve the accuracy of the
proposed method.

3.2. Example 2: Weak Approximation for an SDE Driven by a NIG Lévy
Process

Let Z be a normal inverse Gaussian Lévy process whose characteristic func-
tion is defined by

φt(u) = E(eiuZt) = exp
{
− δt

(√
α2 − (β − iu)2 −

√
α2 − β2

)}
where α > 0 and β ∈ (−α, α) and δ > 0 are parameters. The Lévy density is
given by

ν(x) =
δα

π

eβxK1(α|x|)
|x|

,

where K is a modified Bessel function of the second kind. The NIG process
can be defined as

Zt = θYt + σWYt , (3.1)

where W is a standard Brownian motion and Y is a inverse Gaussian sub-
ordinator: a pure jump Lévy process with Lévy density ρ(x) = 2√

2κπ
e−

x
2κ

|x|3/2

and therefore ρ0 = 0.5 in this case. The parameters (σ, θ, κ) and (α, β, δ) are
related by 

κ = 1

δ
√
α2−β2

θ = βδ√
α2−β2

σ2 = δ√
α2−β2

⇔


α =

√
θ2+σ2κ−1

σ2

β = θσ−2

δ = σκ−1/2.

The representation (3.1) allows to simulate exact increments of NIG process
in order to perform an Euler approximation scheme.
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Let pt be the density of θt + σWt, the density of the NIG process can
be presented as ν(x) =

∫∞
0
pt(x)ρ(t)dt. We define the finite measure νε via

νε(x) =
∫∞
ε
pt(x)ρ(t)dt, and then χε(x) = νε(x)

ν(x) .

The constants λε, γε, σε are computed as follows

λε =

√
2

πκε
exp

(
− ε

2κ

)
− 2

κ
N
(
−
√
ε

κ

)
,

γε = θ − 2θN
(
−
√
ε

κ

)
,

σ2
ε = (σ2 + κθ2)

(
1− 2N

(
−
√
ε

κ

))
−
√

2κε

π
exp

(
− ε

2κ

)
θ2,

where N(x) = 1√
2π

∫ x
−∞ exp(−x

2

2 )dx.

We choose σ = 0.5; θ = 0.4; κ = 0.6, and solve the one-dimensional
SDE

dXt = sin(aXt)dZ̃t,

where Z̃ is the NIG process with drift adjusted to have E(Z̃t) = 0. In other

words, Z̃t = Zt − θt. In this case, the values of λε and σε are the same as

before but γε = −2θN
(
−
√

ε
κ

)
.

We first use the representation (3.1) to define the Euler’s scheme for
X1. Besides, we also use JSAS method and 1JS method to simulate X1 as
introduced in Section 2.4.5.

We now explain how to define the JSAS1 scheme (2.1)–(2.3) to simulate
X1:

1. (T εi )i∈N denotes jump times of a Poisson process whose intensity is
λε, T

ε
0 = 0.

2. (∆Z(T εi ))i∈N denotes a sequence of independent random variables whose
density is νε

λε
.

3. The solution of the ODE dXt = sin(aXt)dt is approximated using the
RK4 method.

A random variable with density νε
λε

can be sampled using the following algo-
rithm:

1. Sample a random variable Y with probability density ρ(x)Ix>ε
λε

using the

acceptance-rejection method (see [5], Example 6.9).
2. Conditional on Y , sample X with law pY . It means that X is sampled by
X = θY +σ

√
YW ′, where W ′ is a standard normal distributed random

variable.

Next, we use JSAS2 method introduced in Section 2.2.2 to simulate X1.
In this setting, Ω(t) = σ2

εh
2(Y 0

t )(t− ηt).
Finally, we use 1JS(AR) method defined in Section 2.4.5 to simulate

X1. We remark that this method already incorporates the Asmussen-Rosiński
approximation in its definition. One can also do a similar computational cost
study for this case. We do not give details but only the following table.
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Figure 7. a = 5, f(x) = 2 − 2 cos(x − X0). Left: Mean.
Right: Variance

Figure 8. a = 5, f(x) = 1{x>3/2}. Left: Mean. Right: Variance

Figure 9. a = 5, f(x) = ex. Left: Mean. Right: Variance

method ES JSAS1 JSAS1(AR) JSAS2 1JS(AR)

cost ε−10 ε−10 ε
−1/2
0 ε

−1/2
0 ε

−1/2
0

Figures 7, 8 and 9 show the Monte Carlo estimation for E[f(X1)] with
f(x) = 2 − 2 cos(x − X0), f(x) = 1{x>3/2} and f(x) = ex, and the corre-
sponding variances, respectively, with a = 5.0.

Figures 10, 11 and 12 show the Monte Carlo estimation for E[f(X1)]
with f(x) = 2 − 2 cos(x − X0), f(x) = 1{x>3/2} and f(x) = ex, and the
corresponding variances, respectively, with a = 10.0. The computational time



Weak Approximations for SDE’s Driven by Lévy Processes 167

Figure 10. a = 10, f(x) = 2− 2 cos(x−X0). Left: Mean.
Right: Variance

Figure 11. a = 10, f(x) = 1{x>3/2}. Left: Mean. Right: Variance

Figure 12. a = 10, f(x) = ex. Left: Mean. Right: Variance

of each method with respect to the case log(N) = 7 and NMC = 106 are
shown in Figure 13.

The conclusion is that, on one hand, JSAS methods have higher rates
of convergence than the other methods. On the other hand, 1JS(AR) method
defined in Section 2.4.5 is very fast and gives good results even when coeffi-
cients oscillate a lot.
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Figure 13. Computation time for estimating Ef(X1)

3.3. Some Conclusions

Throughout the experiments, we see that there is a big gap between theoret-
ical asymptotic values and the actual computational results. So far, one can
see that the 1JS is a fairly efficient scheme in most situations considering its
accuracy and computational time. If high accuracy is required then the JSAS
or 2JS can be used. Further studies are needed which may also incorporate
new schemes. We have striven here for generality and therefore many faster
schemes may be provided for particular situations.
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[13] K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge Uni-
versity Press, 1999.

[14] H. Tanaka and A. Kohatsu-Higa, An operator approach for Markov chain weak
approximations with an application to infinite activity Lévy driven SDEs. Ann.
of Appl. Probab., 19 (3) (2009), 1026–1062. (For an updated/corrected version
see http://www.math.ritsumei.ac.jp/~khts00.)

Arturo Kohatsu-Higa
Ritsumeikan University and Japan Science and Technology Agency
Department of Mathematical Sciences
1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
e-mail: arturokohatsu@gmail.com

Hoang-Long Ngo
Ritsumeikan University and Japan Science and Technology Agency
Department of Mathematical Sciences
1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
and
Hanoi National University of Education
136 Xuan Thuy, Cau Giay, Ha Noi, Vietnam
e-mail: lenhholong@yahoo.com


