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Abstract 

Although the importance of knowledge sharing among designers has been widely recognized, knowledge about 
functionality in the conceptual design phase is hard to capture and is often scattered across technical domains. Aimed at 
capturing such functional knowledge that can easily be applied to other domains, we developed an ontological 
framework to systematically describe it. It includes six kinds of knowledge about functionality, i.e., two types of 
functional models, two types of organization of generic knowledge, and two ontologies of functionality. This paper 
reports on the successful deployment of the framework in a production company. The Plant and Production Systems 
Engineering Division of Sumitomo Electric Industries has used our framework to share functional design knowledge on 
production systems since May, 2001. An empirical evaluation by Sumitomo’s engineers was unanimously positive. 
They said that this framework enabled them to make implicit knowledge possessed by each designer explicit and to 
share it among team members. This paper discusses some successful use-cases in tasks such as a design review, a patent 
application, and solving a quality problem. We also discuss effects of our ontological framework as a consistent 
viewpoint for capturing implicit functional knowledge and as a conceptual inter-lingua among designers. The limitations 
of our framework are also discussed. 
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1. Introduction 

The importance of knowledge sharing among 
designers and engineers has been widely recognized in 
knowledge-intensive engineering. Although CAD data 
has been shared well using the recent CAD and 
computer network technologies, that of knowledge 
about functionality has been left undeveloped. While 
there is no common understanding of what a function 
is  [1]- [4], people share the idea that functional 
knowledge is tightly related to design intention. For 
example, a functional structure  [5] of a product shows 
users how its topmost goal is achieved through 
sub-functions of components and sub-systems 
(so-called “how things work”). Such a product model 
from the viewpoint of functionality is called a 
functional model. Functional models represent a part 
of (but not all of) the designer’s intentions, so-called 
design rationale  [6]. 

As has been discussed in the research on knowledge 
management, making such subjective and hence 
implicit knowledge of a product explicit is highly 
needed for knowledge sharing within a community. 
The same applies to the design community and design 
knowledge sharing is expected to drastically improve 
the design process. For example, in activities related to 

design review, an explicit description of the designer’s 
intentions helps other people to understand the 
original design more effectively. Moreover, it can 
facilitate deeper insights into the designs by the 
designers themselves. 

Much research has been conducted on the 
representation of functionality in Value Engineering 
 [7], engineering design  [4], [5], [8]- [10], and Functional 
Representation  [11]- [20]. Practical design diagrams 
such as QFD (Quality Function Development), FMEA 
(Failure Mode and Effect Analysis) sheets, and fault 
trees in FTA (Fault Tree Analysis) also include 
functional knowledge. However, there is a gap 
between the theoretical and practical work being done 
in companies. From the experience of two of the 
authors who have worked in a production company, 
engineers have suffered from the difficulties of 
sharing technical (functional) knowledge for many 
years. They have regularly written various kinds of 
technical reports/documents for each of the jobs such 
as design review, maintenance report, reliability 
analysis, troubleshooting and have stored much of 
those in databases. Unfortunately, however, it has 
been difficult for them to understand documents 
written by other engineers and hence few such 
technical documents have been efficiently reused. The 
reasons include: 
• It has been hard to describe implicit functional 

knowledge systematically. 
• To retrieve appropriate knowledge has been hard. 
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• Knowledge has been often specific to a target 
product or equipment. 

• Representation frameworks, such as FMEA and 
FTA, have been task-specific. 

The authors have been tackling these real problems in 
the industry for many years on the basis of 
Ontological Engineering and have established an 
ontological framework for functional knowledge 
 [22]- [24]. This is based on functional ontologies, 
which provide viewpoints and the vocabulary for 
capturing functional knowledge that can be used to 
solve these problems (discussed in the next section). 

Although a great deal of research on Ontological 
Engineering has been done in the last decade, little is 
known about its deployment in industry. This research 
has not focused on the generic mechanism for 
ontological models but on the real content of 
well-focused target knowledge, that is, functional 
knowledge that is still so generic that it could be 
applied to all artifacts. This framework was 
successfully deployed in the Production Systems 
Division of Sumitomo Electric Industries, Ltd.  

This paper discusses use experiences and effects of the 
ontological framework deployed in Section 4 after a 
detailed analysis of the problems in Section 2 and an 
overview of our framework in Section 3. A knowledge 
management program named SOFAST® was 
developed for the deployment. Its architecture is 
described in Section 5. The success factors and 
limitations are analyzed in Section 6. Then, related 
work is discussed followed by some concluding 
remarks. 

2. Ontological approach to sharing 
functional knowledge 

A functional representation of a product consists of 
descriptions of the functionality of components (or 
(sub-)systems) and the relationship between them. Our 
claim is that it is not trivial to clearly identify 
function-related concepts and relations as we explain 
below. We think it is one of the deep causes of the 
difficulties in the industry mentioned in the 
Introduction. 

In Value Engineering (or in similar ways in functional 
representation), functionality of a component is 
denoted as a “verb+noun” style for representing the 
component’s activities (or actions) and its operands (in 
the terminology in  [10]). However, such 
representations cannot prevent inappropriate modeling. 
For example, one might describe “to weld metals” as a 
function of manufacturing equipment. However, “to 
weld” implies not only “what to achieve”, say, “to 
join”, but also “how to achieve” in which the metals 
are fused. From the functional point of view, the 
fusion is not regarded as a goal (“what to achieve”) 

but just the method by which the goal is achieved 
(where fusion is the goal, its generalized goal (i.e., the 
super-concept in an is-a hierarchy) can be “to melt” or 
“to mix”.). In fact, the same goal can be achieved with 
different methods (e.g., using nuts and bolts) without 
fusion. To allow freedom in design and to make the 
selection of “nut & bolt” instead of “welding” possible, 
the achieved function of both methods should be the 
same, say, “to join”. Of course, some of the 
characteristics of the results of joining using fusion 
and with “nut & bolt” are different (e.g., ease of 
disassembly). Such characteristics can be regarded as 
the conditions for selecting a method for a specific 
function. It is true that a functional term loses some 
amount of information by this information 
decomposition. However, what is lost is added to the 
information on methods. In total, functional terms can 
successfully be made very generic without any loss of 
information. 

Pahl and Beitz defined some sets of a few (4-16) 
generally-valid functions  [5] . However, they are too 
abstract to describe details on the designer’s intentions. 
In fact, there are general-specific relations (so-called 
is-a, a-kind-of, abstraction, or specialization relations) 
between functions. For example, in Hubka and Eder 
 [10], the hierarchy for the “degree of abstraction” of 
functions represents the specialization of functions 
with additional conditions. The conditions, however, 
may sometimes (not always) include the 
characteristics of a specific method of achieving a 
function such as “transportation by sea”  [10] which 
has the same difficulty as “welding”. 

This difficulty in capturing functions and their 
relations is a special case of a general problem treated 
in Ontological Engineering where it is hard to 
distinguish the is-a (general-specific) relation from the 
part-of relation (so-called whole-part, micro-macro, 
decomposition, or aggregation relation). The part-of 
relation between functions represents how a function 
is achieved by finer-grained functions (we call this the 
“is-achieved-by” relation) and has been captured as 
function decomposition  [5], whole-part relation  [15], 
and “degree of complexity”  [10]. Nevertheless, 
engineers are still easily confused as the above 
examples demonstrate. 

These observations suggest the necessity of an 
ontological schema for functional knowledge. An 
ontological schema specifies not only the data 
structure but also the conceptual viewpoint for 
capturing the target world (called specification of 
conceptualization  [25]). It provides guidelines or 
constraints on modeling, which helps knowledge 
authors describe knowledge consistently. An 
ontological schema for functional knowledge includes 
the fundamental ontology for capturing functions and 
the clear organization of concepts and relationships, 
which help the knowledge author separate “what to 
achieve” from “how to achieve”.  
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This paper mainly concentrates on such roles of 
ontologies in the knowledge capturing and organizing 
phase. The roles of ontologies in knowledge exchange 
and communication in engineering, on the other hand, 
have been investigated elsewhere  [26]- [29].  

In the design literature, German systematic design 
approach  [5] has provided us with a basic viewpoint to 
capture functions, in which they are regarded as the 
input-output relations of a black-box. The black-boxes 
are connected and aggregated (or decomposed). In 
Ontological Engineering, such a device-centered 
viewpoint originating from systems dynamics theory 
is called device ontology. There are several examples 
of this  [3], [30]- [33]. A device ontology is suitable as a 
basis for establishing ontologies of functional world, 
since functions are usually considered as what 
components or devices achieve.  

We have established an ontological modeling 
framework, whose features include:  
• An extended device ontology: Refined device 

ontology for capturing behaviors of components 
 [24]. 

• A functional concept ontology: to provide generic 
functional concepts representing verbs of functions 
in is-a hierarchies  [21]. 

• Conceptualization of “ways of function 
achievement” and their is-a hierarchy for detaching 
them from functions  [22]. 

• Four types of functional knowledge and 
ontological modeling guidelines  [23]. 

• Integration of information on unintended use for 
maintenance  [34], [35]. 

Such ontological commitments help designers 
explicate their own thoughts on the design and share it 
with a design team. This paper discusses such effects 
in the deployment in Section 4. The last feature is to 
solve the last problem (i.e., task specific representation 

such as FMEA) mentioned in the Introduction. 

3. Ontological Modeling Framework 

Our framework for functional-knowledge modeling is 
described in Fig. 1. This framework is an extension of 
our functional modeling language FBRL (abbreviation 
of a Function and Behavior Representation Language) 
 [36]. It shows the modeling process from the 
functional model of a concrete artifact to 
well-organized generic knowledge. It includes six 
kinds of knowledge about functionality.  

This modeling framework is based on an extended 
device ontology (Fig. 1(f)) as a basis for 
conceptualizing the functional world. We extended the 
conventional one mentioned in the previous section by 
redefining the concepts of “conduit” and “medium” to 
provide knowledge authors better ontological 
guidance and to cope with mechanical domains that 
seemingly do not fit the device ontology  [24], [37]. 
The extended device ontology specifies “roles” played 
by physical things (“participants”) taking part in the 
physical world. 

Based on the extended device ontology, the 
“behavior” of a device is defined as the objective 
(independent of designer’s intentions) interpretation of 
its input-output relations considering the device as a 
black box. The description of the behavior is 
independent of the system (i.e. context) in which it is 
embedded. A device is connected to one another 
through its input or output ports. A device plays a role 
as an “agent”, which changes the states of things being 
input (called “operand”, i.e., the thing being processed 
by the device) such as fluid, energy, motion, force, 
and information. The input-output relation of the 
behavior is, more precisely, the difference between the 
states of the operand at the input port and that at the 
output port. A device can be a mechanical element, a 
mechanical pair, a component, an assembly, a 

Ways for 

(e) Functional
concept
ontology

(c) The is-a hierarchies of
ways of function achievement

(for each macro-function)

way

is-ais-a

function

(a) Function
decomposition tree
(specific to  each system)

(b) General function
decomposition tree
(specific to systems 
to share top-function)

way

Way of function achievement

Function (functional concept)

Characteristics of ways
Is-a (general-specific) relation
is-achieved-by (whole-part)
relation with way

Ways for 

is-a

is-achieved-by
OR

OR

ANDAND
AND

(f) Extended device ontology

(d) ad hoc classification
trees of ways 
(specific to  
each viewpoint)

macro-
function
micro-
functions

 

Figure 1. Framework for functional-knowledge modeling. 
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sub-system, or a system. These include both products 
and manufacturing machines.  

A “conduit” is defined as a special type of device that 
can be considered as transmitting an operand to the 
output port without any change in the ideal situation. 
Examples include a pipe for liquid and a shaft for 
torque. One of the reasons for having the conduit 
concept is that we can neglect the “to transmit” 
function common to all devices that transmit input 
things to the output. A “medium” is something that 
holds an operand and enables it to flow among devices. 
One example is steam for heat energy. In some 
domains, the thing playing the conduit role can play 
the role of medium as well. For example, while a shaft 
is a conduit for force and motion, at the same time, it 
is also the medium for them.  

A function is defined as the teleological interpretation 
of a behavior under an intended goal  [21], [36]. 
Although the selection of a function (i.e., 
interpretation of behavior) is dependent on the 
(sub-)system in which it is embedded, the definitions 
of functions themselves can be done locally. Such 
definition of function which distinguishes the 
functional interpretation from the micro-macro 
relation is different from those in  [12], [17] which are 
based on the micro-macro relationship. The definitions 
of functions in the literature  [10], [15], [16] also 
distinguish them. However, we explicate mapping 
primitives between behavior and function (called 
functional toppings (FTs)  [36]) and the operational 
conceptualization of functional concepts.  

We developed an ontology of generic functions (called 
functional concept ontology) shown in Fig. 1(e) with 
such operational definitions  [21]. It defines about 220 
concepts in four kinds of is-a hierarchies. 

On the basis of these two ontologies, a function 
decomposition tree (Fig. 1(a) and examples are in Figs. 
2 and 3) first models the functional structure of a 
specific device. All functions (rounded box nodes in 
the tree) in the function decomposition tree are 
instances of generic functions defined in the functional 
concept ontology. This basically represents that a 
required function (called a macro-function) can be 
achieved by the sequence of specific sub(micro)- 
functions. This relation is a kind of “part-of” relations 
or aggregation relations between functions.  

In this framework, “the reason why a function can be 
achieved” is conceptualized as a “way of function 
achievement”. It explicates background knowledge on 
functional decomposition such as physical principles 
and theories. In Figs. 1(a) and 2, the way is 
represented by the small dark squares that connect the 
whole function to sub-functions.Moreover, the 
framework includes unintended behaviors  [34], [35]. It 
is needed for explicating the design rationale for 
supplementary functions to prevent them from 

occurring. It is important in design review activities 
and equipment improvements as discussed in Section 
4. 

Second, a general function decomposition tree (b) is 
composed of some function decomposition trees for 
similar devices with the same whole-function. It 
includes alternative ways of function achievement in 
an OR relationship. It represents possible ways to 
achieve a specific function. Fig. 4 shows an example. 

Last, a concrete way of function achievement in a 
(general) function decomposition tree is generalized 
into a generic way of function achievement (called 
functional way knowledge). Then, ways to achieve the 
same function are organized in is-a relations according 
to their principles (called an is-a hierarchy of ways of 
function achievement (c) and some examples are 
shown in Fig. 5). We distinguish the organization as 
an is-a hierarchy from the other derivative 
organizations depending on viewpoints (called an ad 
hoc classification tree (d)). The ad hoc classification 
trees can be reorganized by a functional way server 
according to a given viewpoint  [22]. Such generic 
functional knowledge is somewhat similar to that 
presented in  [8], [16], [17]. We will discuss the 
differences in Section 7. 

Of most importance in this conceptualization is that 
these types of trees concerning functions in Fig. 1 are 
different from one another despite the superficial 
similarity. The function decomposition tree (a) 
represents is-achieved-by (a kind of part-of) relations 
between functions. The is-a hierarchies of ways of 
function achievement (c) represent abstractions of key 
information about how to achieve the function, while 
the is-a hierarchies in the functional concept ontology 
(e) represent abstractions of functions themselves, i.e., 
what to achieve. Moreover, the number of ways to 
achieve a function is huge in nature, while the number 
of functional concepts is small.  

Currently, the guidelines for building these trees are 
being developed and are concerned with agents and 
operands of functions, relations between sub-functions, 
and “is-achieved-by” relations  [23]. They help a 
modeler capture functional structures based on the 
extended device ontology. For example, one of the 
guidelines prescribes that sub-functions must 
contribute to achieving the macro-function clearly on 
the basis of the physical principles represented as the 
way of function achievement. According to this 
guideline, a modeler should check for the existence of 
implicit functions. 

4. Deployment 

The ontology and the modeling framework for 
functional knowledge have been deployed for over 
three years at the Plant and Production Systems 
Engineering Division of Sumitomo Electric Industries, 
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Ltd. (hereinafter referred to as SEI). The purpose was 
to share functional knowledge among engineers in the 
division about the production facilities used in their 
daily work.  

After a one-year study of our framework, test use was 
commenced in February 2001. In May, 2001, use on 
real problems encountered in daily work was started. 
A knowledge management software named SOFAST 
(discussed in the next section) has been deployed since 
December, 2002. Currently, about 50 people in three 
factories use the framework in their daily duties. The 
database for the SOFAST software includes 103 
(generic) function decomposition trees for machines 
used in real work. The targets are manufacturing 
facilities that are mainly used in semiconductor 
manufacturing processes including machines to slice 
semiconductor ingots (wire-saw and inner-blade 
types), machines to polish wafers, a tension control 
system, a machine to adjust optical fiber connections 
and inspection machines. 

First, function decomposition trees were described to 
share understanding of the target facilities as discussed 
in Section 4.1 and Fig. 2. They were also used for 
improving facilities as discussed in Section 4.2 and 
Fig. 3. Next, general function decomposition trees 
were used for the design review (Section 4.3) and 
patent application (Section 4.4 and Fig. 4). Such 
function decomposition trees could be shared with 
different types of engineers and in different tasks as 
discussed in Section 4.5. Last, specific ways of 
function achievement in function decomposition trees 
were generalized and organized in is-a hierarchies. 
Such kinds of knowledge base can be used to explore 
ways of doing conceptual design as discussed in 
Section 4.6. 

A users’ group of SOFAST software for companies 
was established in April, 2003. There are currently 13 
member companies where test use has been done. 

4.1 Understanding and Sharing DRs 

Figure 2 shows a function decomposition tree of a 
production machine called a wire-saw. It has been 
designed to slice semiconductor ingots with moving 
wires. The top function is “to split” rather than “to 
slice”, since “to slice” implies how to split and 
specific information about the thinness of the split part. 
The former information is regarded as a way of 
function achievement. The latter information is 
regarded as the quantitative degree of results of a 
function. Such specific information about the degree 
of a function can de used as the conditions for 
selecting a way of function achievement from the 
available ways for achieving the function. Splitting is 
achieved with two sub-functions; losing the 
combination force of the part (kerf loss, i.e., part lost 
by cutting) and moving the part away. This way of 
function achievement is conceptualized as the 
“removing way” based on the separation of the kerf 
loss part. The sub-functions are further decomposed 
into smaller sub-functions.  

Figure 2 includes possible unintended behaviors of the 
device (phenomena) and supplementary functions to 
avoid them. For example, the cooling function for the 
moving wire has been designed to keep the wire from 
snapping due to heat caused by friction. The relation 
between wire snapping as a possible unintended 
phenomena (or trouble) and frictional heat as its cause 
is explicitly described. In other words, our framework 
provides knowledge media on such designer’s 
intentions.  
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Figure 2. Function decomposition tree of a wire-saw for slicing ingots (portion). 



 

- 6 - 

Such a function decomposition tree shows the 
designer’s intentions on how to achieve the goal, 
which is not included in either the structural or 
behavioral model. This effect is basically the same as 
in the conventional function decomposition tree  [5]. 
The main distinctive features of our framework 
include (1) the concept of “way of function 
achievement” and its relationship with functions, (2) 
the extended device ontology, and (3) integration of 
unintended behaviors explained as follows. First, the 
concept of “way of function achievement” and 
definitions of relationships with functions discussed in 
Section 3 help knowledge authors to keep functions 
representing “what to achieve”. For example, as 
mentioned in Section 2, the pseudo function “to weld” 
can be decomposed into the “joining function” and the 
“fusion way of function achievement”. The 
characteristics of welding such as the melting of 
objects are described as properties of the fusion way. 
To use the way of function achievement is not 
mandatory, since it can be left anonymous when there 
is no necessity to conceptualize it. Therefore, its 
introduction is not restrictive in building a function 
decomposition tree. 

Second, the extended device ontology provides 
concepts for assigning “roles” for each object in the 
target world. In Fig. 2, the wire can be considered as 
an agent (exerting force on ingots), an operand 
(moved by the roller) or a conduit (transmitting 
tension). According to semantic constraints in the 
extended device ontology, a possible way to 
consistently assign roles is to decompose the wire into 
two parts, a working wire as an agent and a 
transmitting wire as both the medium (a sub-concept 
of the operand) and conduit. One extension to the 
device ontology is to accept the last situation.  

Last, the integration of unintended behaviors into the 
function decomposition tree enables us to understand 

the intention of the supplementary functions, which 
often give important information. For example, 
another designer can understand that the reason for the 
existence of the supplementary function “to cool wire” 
in Fig. 2 is to avoid snapping by removing the cause, 
i.e., frictional heat. 

The experiential evaluation on this aspect by the SEI 
engineers was unanimously positive. They said that 
this framework enabled them to explicate implicit 
knowledge possessed by all designers and to share it 
among team members. It was easy for designers to 
become familiar with the framework based on the 
device ontology. They said that the explication of their 
own implicit design knowledge helped them reflect on 
the design and/or the target devices. This benefit 
provided them with strong motivation for describing 
the functional models. 

4.2  Equipment Improvement 

This section reports on a real example of making 
implicit knowledge about the functionality of the 
manufacturing equipment explicit and the 
improvement resulting from the explicated knowledge. 
The target manufacturing equipment was a machine 
for polishing semiconductor wafers. As we can see 
from Fig. 3, a weighted rotating disk polishes the 
wafer on a table with slurry containing diamond 
powder as the grinding ingredient. The rotating disk 
moved freely inside an outer ring called the guide ring. 
The goal for improvement was to reduce the time 
necessary to grind a wafer to 63%. To do this, an 
engineer initially tried to adjust the values of the 
working parameters of the machine such as the 
rotating speed of the disk and the weight and amount 
of slurry. After four months of investigations, however, 
the results were still not conclusive to reach this goal.  

Then, to establish another (unknown) working 
parameter, he described the function decomposition 
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Figure 3. Function decomposition tree of a polisher to find parameters 
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tree of the machine (Fig. 3). He referred to another 
function decomposition tree of the wire-saw (Fig. 2), 
which had been stored in the database discussed in 
Section 5. Although these two machines had different 
main functions, he found a shared function “to 
maintain a large friction coefficient” and its 
sub-function “to place diamond powder between the 
wafers and the table” by referring to the function “to 
place grinding compound” in the function 
decomposition tree of the wire-saw. This reused 
intermediate sub-function clarified a part of the 
mechanism required to achieve the high time 
efficiency. As a result, he became aware of the 
additional (and implicit) function of the guide ring, i.e., 
to place the diamond powder in the slurry into the 
grooves of the table to achieve the function “to place 
diamond powder between the wafers and the table”. 
Thus, he changed the width of the guide ring so that 
more diamond powder could be placed into the gaps 
between the wafer and the table. Eventually, the 
necessary time was reduced to 76%, which was better 
than the initial goal. This improvement was achieved 
within three weeks. 

4.3 Design Review 

Design review is a team activity to double-check the 
original design and explore possible alternatives. To 
explain the original design, the SEI engineers had 
been using a comparative table with a text, which 
described alternative designs in columns with their 
features in rows.  

The Production Systems Division of SEI adopted a 
general function decomposition tree as the regular 
schema for design-review documents. It showed 
alternative ways of achieving functions for each (sub) 
function, their features in comparison, and reasons for 
adopting a specific way, or not, in the one figure. It 
was difficult to describe all alternatives exhaustively 
for each function in the comparative table. Thus, the 
design review had to be done thrice on average. After 
adopting our framework, however, the number of 

times the design reviews had to be done was reduced 
to one third.  

The description of unintended behaviors and 
supplementary functions played an especially crucial 
role in design for reliability. It showed the original 
design took into account what phenomena could 
possibly occur and how to avoid these with additional 
supplementary functions (Fig. 2). 

4.4 Patent Map and Patent Applications 

Another use for the general function decomposition 
tree is as a kind of “patent map” to indicate applicable 
ways to achieve a function. For example, Figure 4 
shows a general function decomposition tree including 
patented ways of handling wafers. The italics are 
abbreviated names of companies which adopt each 
way for manufacturing wafers. The differences in 
working principles and features of patents are 
organized in each level of function decomposition. It 
includes possible unintended (undesirable) phenomena 
and problems such as wafer chipping for each way.  
Differences (originality) in the new patent from 
conventional ones can be explicitly described in patent 
applications as new ways of function achievement 
and/or new features of ways. 

In applying for a new patent, it is difficult for 
engineers and patent attorneys to clarify its originality 
and to make the proper claims. At SEI, it took a lot of 
hard effort over a long period, on average, three or 
four weeks. When a patent application was completed 
with the general function decomposition tree in Fig. 4 
(plus new ways of function achievement to create new 
patent), the period was reduced to just one week (i.e., 
one third the usual time). Moreover, the patent claims 
were increased, in some cases doubled. This was 
because the patent attorney found additional 
differences with other patents by checking each level 
of function decomposition in the general function 
decomposition tree. 
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Figure 4. A patent survey for handing semiconductor wafers 
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4.5  Sharing with Different Types of Engineers 
and Sharing in Different Tasks 

In addition to designers and patent attorneys using our 
framework as knowledge media for communication, 
designers, manufacturing engineers, manufacturing 
equipment engineers, equipment operators, and 
equipment maintenance personnel, all used it in 
collaborative work. Although mutual understanding 
and collaboration are urgently required, this rarely 
happens because they have their own viewpoints and 
use different knowledge representations such as design 
drawings, QFD, FMEA sheets, and FTA diagrams. 
The problem is in that each representation uses its own 
vocabulary and lacks interoperability with the others. 
The use of our framework, however, facilitated their 
mutual understanding and collaboration in a project to 
improve equipment where it worked as a common 
vocabulary, which was lacking before. 

Another kind of interoperability of knowledge in our 
framework was among different tasks (engineering 
activities) such as design, solving quality problems, 
and patent applications. For example, the function 
decomposition tree described to review designs (as 
discussed in Section 4.3) was reused to diagnose a 
problem with equipment deployed on the 
manufacturing line and to improve the equipment. It 
was derived from a sub-system that adjusted the angle 
at which ingots were cut with the wire saw (Fig. 2). A 
new FTA diagram might have been described to solve 
the problem in conventional work. Moreover, we 
applied a new patent to adjust the sub-system using 
the same function decomposition tree plus information 
from existing patents that were related. This means 
that the same knowledge representation was reused in 
different tasks, i.e., design, diagnosis, improvements, 
and patent applications, which was impossible before 
at SEI. 

4.6  Expanding Alternative Ways of Function 
Achievement using Generic Ways 

The specific ways of function achievement are 
generalized into generic ways and then organized in 
is-a hierarchies. Figure 5 shows is-a hierarchies for 
ways of function achievement for split functions and 
others. They have been generalized from specific ways 
used with the wire-saw (Fig. 2) and other cutting 
machines such as water jets and electrolysis. Within 
this organization, the differences between the 
wire-saw and other cutting machines are explicitly 
represented. Wire-sawing uses three ways, i.e., the 
removing way for splitting, the physical force way for 
losing combination force, and the linear friction way 
for exerting force. Moreover, the ways of exerting 
force can also be used for other machines, e.g., 
washing machines. For example, dirt is separated from 
clothes by random friction force caused by the rotating 
screw in a screw-type washing machine. This suggests 
that these pieces of knowledge are general and can be 
applied to different domains. The conventional 
organization for ways of cutting found in text books in 
the field does not mainly show principles but “what 
something is used for” such as wires and blades. “The 
wire-saw way” found in text books is not a single way 
of function achievement but a composite made up of 
three primitive ways. 

Although knowledge on such organization of ways of 
function achievement has not been fully deployed yet, 
a feasible new improvement to wire-sawing was found 
in the knowledge-base, i.e., we manually found a way 
of using the magnetic fluid that is used in the textile 
industry to control the tension of the wire. This simple 
invention could have been done by a computer system 
called the functional way server  [22]. This indicates 
the utility of our framework for general functional 
knowledge. 

Techniques of shedding light used in inspection 
machines were also systematized in deployment. 
Consulting systematized generic ways in the 
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Figure 5. An example of organizing generic ways in is-a hierarchies 
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knowledge-base, a novice engineer developed an 
inspection machine in three days. Experts usually need 
two weeks for such developments.  

5. SOFAST® software 

We developed a knowledge management software 
named SOFAST® (abbreviation for Sumitomo 
Osaka-university Function Analysis and 
Systematization Tool and registered trademark of 
SEI.), which was designed to support the description 
of functional knowledge and sharing in an 
intra-network. It consists of client software and an 
SQL server (Fig. 6(a)). Using the client software, a 
user can describe function decomposition trees on a 
graphical user-interface. Figure 6(b) has a screen 
snapshot, where both main panes display a general 
function decomposition tree in different styles in 
Japanese. As we can see from the right pane, users can 
attach related documents including bitmap images, 
graphs, and spreadsheets to the tree. The small 
window in the middle is an overview of the whole tree 
for scrolling. 

The described models are stored in the SQL server and 
can be accessed by users with the client software (or 
any SQL-support software) from other hosts. Because 
the server stores each way of function achievement at 
each level separately, a user can retrieve many ways of 
function achievement from different facilities or 
products to achieve the specified function by 
specifying a goal function. For example, 56 instances 
of ways of function achievement for “to shed light” 
from many facilities (including different applications 
of the same generic way) can be found from the 
current SOFAST database, which includes the 103 
(general or specific) function decomposition trees. 

Since April, 2003, we have provided SOFAST to 13 

other companies in the SOFAST users’ group. The 
authors regularly hold meetings with the 
member-companies for lectures, training, reports on 
use, and discussions on further improvements.  

The current implementation of SOFAST is, as 
discussed in detail in Section 6.2, data storage 
software rather than an intelligent design support 
system. The success of the deployment discussed thus 
far is accomplished not only by the functionality of the 
SOFAST software but also by the lectures and training 
in the collaborative work done between Osaka 
University, SEI, and the users’ group. The lectures and 
training are aimed at reinforcing the constraints of the 
ontologies discussed in Section 3 on knowledge 
authors. As we will discuss in the next section, the 
factors for success mainly result from such ontological 
commitments. Moreover, the management capability 
of is-a hierarchies of generic ways of function 
achievement is missing. The built-in vocabulary of 
functional concepts is not based on the functional 
concept ontology. Improvement in this respect is 
discussed in Section 6.2. 

6. Discussion  

6.1  Success Factors for Deployment 

The successful deployment discussed thus far is a kind 
of knowledge management activity. In general, 
difficulties with knowledge management activities 
include: 

• Difficulty in explicating implicit knowledge, 
• Difficulty in retrieving useful knowledge, and 
• Lack of motivation in writing own knowledge. 

First, it is difficult to explicate one’s own implicit 
knowledge. Functional knowledge is intrinsically 
subjective, not objective. Without guideline, novice 
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modelers would be puzzled in describing functional 
models. Functional ontologies provide conceptual 
rules or guidelines to capture the target world, i.e., 
conceptual and subjective functions. Extended device 
ontologies, especially, provide users with hints on 
interpreting how a device works consistently as 
discussed in Section 4.1. The concept of “way of 
function achievement” also helps modelers to 
eliminate the confusion between “what to achieve” 
and “how to achieve it”. A clear distinction between a 
general-specific hierarchy (is-a relations) and a 
whole-part hierarchy (is-achieved-by relations) helps 
knowledge authors to have consistent descriptions of 
function decomposition trees and is-a hierarchies of 
ways of function achievement. This avoids the 
confusion between the two, which has often occurred. 

Although difficulty in retrieval is sometimes treated as 
a technical issue in information searches, we believe 
that the retrieval problem with functional knowledge 
is due to the dependence of content on “how to 
achieve functions” and “how to use information”. 
When functional terms used are composites of “how to 
achieve” and “what to achieve” like they were before 
(e.g., “to weld”), the terms are very domain- and 
equipment-dependent and hence generality is low. 
This has caused the low retrievability of knowledge. 
This issue can be avoided by the concept of “way of 
function achievement” as previously discussed 
because its detachment from functional concepts 
makes the functional terms very general. 

“How to use information” is also important in the 
knowledge management context. The knowledge 
found has to be ready for use in the task at hand. To do 
this, well-prepared knowledge representation needs to 
be available which the knowledge should fit. This 
issue is partially resolved by our functional ontology 
framework which is an integration of knowledge about 
functional structures representing intended behaviors 
and unintended behaviors at an appropriate level of 
abstraction, i.e., the functional level. This enables the 
same model (representation) to be used in different 
tasks as discussed in Section 4.5. Such applicability in 
multiple tasks reduces the effort required by 
knowledge authors. Furthermore, it augments 
interoperability among task-dependent knowledge 
representation via our framework. 

Last, in general, knowledge authors have no effective 
motivation to write their own knowledge and share it 
with others. In deployment, however, engineers 
themselves say that they obtain benefits from writing 
functional models of their own equipment, since it 
gives them the chance to reflect and obtain good 
stimuli, which leads them to an in-depth understanding 
of the equipment. This is enabled by our modeling 
framework operating as a knowledge medium, which 
externalizes the engineers’ understanding, which had 
been implicit, to an appropriate level of abstraction 
with consistent guidance. There was a real example in 

Section 4.2. In general, the micro-macro hierarchy of 
the function decomposition tree enables the designer 
to systematically explore possible alternatives (for 
conceptual design) and/or causes of the problem (for 
problem solving) for each function. For example, fault 
tree analysis (FTA) for problem solving tends to make 
it difficult to enumerate all possible causes without a 
clear understanding of the function structure of the 
target device. 

6.2  Limitations 

The main point of our framework is that it adopts an 
ontological approach to controlling the content of 
functional models.  However, it has some 
disadvantages. The first one is less freedom of 
functional representation than ad hoc functional 
modeling. It became a problem especially in selecting 
a functional concept for a component. There could be 
a domain-specific vocabulary and different terms for 
the same concept. We cannot claim completeness of 
concepts in our functional concept ontology due to its 
nature and understand the necessity of extending it. In 
order to make the use of SOFAST easier, the latest 
version supports multi-level terms which consist of the 
functional concepts (defined in the ontology), usual 
function words and domain-specific vocabulary. The 
usual function words are verbs for representing 
functions appearing in daily work, and have been 
prepared beforehand by collaboration with companies 
in the users’ group. Such words are associated with 
each functional concept. SOFAST of the latest version 
thus allows knowledge authors to use terms rather 
freely. 

The second disadvantage of our ontological approach 
is that it needs training for writing functional models 
that are compliant with functional ontologies. In other 
words, it is not very easy to impose ontological 
commitments on knowledge authors. The authors are 
currently establishing stepwise guidelines for 
describing functional knowledge to enable easier 
commitment to the ontologies  [23]. Moreover, 
automatic checking of violations in the functional 
models against ontologies is being investigated. 
Neither of our ontologies is just a taxonomy. Their 
definitions are structured with slots and constraints 
and include axioms as a result of deep insights into the 
behaviors and functions in physical systems  [22]. Such 
formal definitions can be used to automatically check 
the models. 

As a result of these limitations, some of the functional 
models described thus far do not follow the functional 
ontologies completely in deployment. The current 
vocabulary used in SOFAST is not fully based on the 
functional concept ontology. The main use of 
SOFAST, currently, is to describe the function 
decomposition trees of each production facility and a 
general function decomposition tree for similar 
facilities. Sharing ways of function achievement in 
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SOFAST does not rely on the is-a hierarchy of generic 
ways but on searching for specific ways of function 
achievement by specifying the goal function. 
Nevertheless, discrimination of is-a relations from 
ways of function achievement has helped engineers 
avoid a great deal of confusion. Such advanced 
features of our framework are to be deployed by 
implementing new functionalities to support them in 
SOFAST together with advanced training. 

Apart from the production systems and facilities 
discussed in this paper, ontologies have been applied 
to modelling a power plant  [21], an oil refinery plant, 
a chemical plant, a washing machine, a printing device, 
and manufacturing processes. The models have taken 
into account changes in thermal energy, flow rate, and 
ingredients of fluids, including force and motion of 
operands. The current functional concept ontology can 
describe simple mechanical products, although it does 
not cover static force balancing and complex 
mechanical phenomena based on the shape of 
operands. The modelling framework currently cannot 
cope with the human philological process, body 
movements (so-called therblig in Industrial 
Engineering), business processes, or software 
processes. 

7. Related work 

7.1 Engineering Ontologies 

Of the types of ontologies, we did not concentrate on 
the task ontology of design activities (such as 
Chandrasekaran  [38]) but the domain ontology of 
artifacts to be designed. Much work on ontologies in 
the engineering domain  [3], [26]- [33], [39]- [41] has 
been done. One remarkable example is by Borst, et 
al. [32], in which the PhysSys ontology was proposed 
as a sophisticated lattice of ontologies for the 
engineering domain. However, the device ontology in 
PhysSys is weak in the same way as conventional ones 
in that it does not have sufficient concepts to enable 
the ontological roles all participants play to be 
understood. We extended such conventional one by 
redefining “conduit” and “medium” as an extended 
device ontology. Our refinement to the device 
ontology provides the modeller with more detailed 
guidelines to capture target devices. 

Moreover, the PhysSys ontology has no ontology for 
functions from the teleological viewpoint. 
Chandrasekaran and Josephson clarified meanings of 
the concept “function” based on ontological 
considerations and proposed two types of functions, 
i.e., device-centric and environment-centric  [3]. 
Although we share this distinction and their attitude 
towards ontological analysis, we only concentrated on 
a device-centric viewpoint in this paper. Other 
classifications of functions can be found in  [2], [4], [20]. 

Other ontological considerations on functionality can 
be found in  [33], [40]. 

Recently, ontologies have played a crucial role on the 
emerging Semantic Web in giving interoperability to 
web resources (e.g.,  [42]). Knowledge on unintended 
behaviors discussed in this paper can be regarded as 
different knowledge resources based on ontologies 
that are different from the functional ontology. The 
authors are currently investigating design knowledge 
transformation based on such multiple ontologies on 
the Semantic Web. 

7.2 Functional representation 

There has been a great deal of research on functional 
representation  [3], [8], [11]- [20], [43]. We did not focus 
on the purpose function but on the technical functions 
in the terminology in  [4], [10].  

The main point of our research is to clarify several 
relationships related to functionality, i.e., the is-a 
hierarchy of functions, the is-achieved-by (part-of) 
relations among functions, and the is-a hierarchy of 
ways of function achievement. We detach a part of the 
conditions for specialization in  [4], [10] (see discussion 
in Section 2) and thus described them as specific 
attributes of the way of function achievement in an is-a 
hierarchy  [22], [23].  

Similarly to the way of function achievement, a feature 
of function decomposition can also be found as a 
“means” in  [18], [19], [44]. In  [18], it is not generic 
knowledge but a model specific to a product. In  [19], 
although generic knowledge of single functional 
decomposition is discussed as “means”, organization 
between them is not discussed. We defined is-a 
relations between conceptualized generic ways of 
function achievement, and investigated how to 
organize them.  

The design prototypes  [8] include structural 
decomposition as well as function decomposition. In 
the FBS modeling framework  [16], the function 
prototype includes physical features of behavior to 
achieve the function as well as generic function 
decomposition. Our description of ways tried to 
maximize its generality by pointing out partial (and 
abstract) information on structure and behavior. 

Patterns of function achievement or so-called design 
catalogs can be found in the design literature  [5]. 
However, they mainly concentrate on concrete 
mechanical pairs.  

We defined functional concepts using operational 
information called functional toppings (FTs) such as 
those that focus on operands and the necessity for 
operands, which then enable us to define intention-rich 
functional concepts  [21]. Many “verb+noun”-style 
functional representations lack such operationality. 
For example, standard sets of verbs (i.e., functional 
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concepts) proposed for value analysis  [45] have no 
machine understandable definition of concepts. 
Although the recent efforts for a standard taxonomy 
for engineering functions by the NIST Design 
Repository Project  [46] are well established, they lack 
operational relationship with behaviors.  

De Kleer defines function as a causal pattern between 
variables  [11]. In the FBS model  [16], the functional 
symbol in natural language in the verb+noun style 
represents the intention of designers. We tried to 
identify operational primitives as FTs to represent 
intentions. Keuneke defines types of functions such as 
ToMake  [13]. Our FTs include these. Although we did 
not adopt either the process ontology  [39] or bond 
graph theory  [47], our functional concept ontology 
includes similar functions in flow-based functional 
modeling approaches  [14], [15]. 

The teleological interpretation specified by FTs in our 
approach is similar to the “means and ends”  [15], F-B 
relationship  [16], and “aims-means”  [10]. The last axis 
includes design requirements as well  [10]. Gero  [48] 
coped with dynamic changes in the design context 
such as requirements. 

Andreasen et al. identified several structures not only 
including the “functional oriented structure” but also 
the “product life oriented structure” for so-called 
DFX: Design for “something”  [9]. 

In IDEAL  [17], generic teleological mechanisms 
(GTM) are used (modified) to design different 
contexts based on analogies. In our approach, based on 
a limited set of functional concepts, designers can 
explore explicit is-a hierarchies of ways of function 
achievement.  

TRIZ (TIPS) theory provides some patterns (or 
strategies) for inventions based on the contradiction 
between two physical quantities  [49]. We did not 
concentrate on design strategies but on modelling 
schema. TRIZ theory also concentrates on physical 
principles (effects), although we established a clear 
relationship between physical principles and 
functional structures.  

7.3 Unintended behaviors 

Information on unintended behaviors in our models 
can be found in other formalisms such as FMEA 
sheets and fault trees in FTA. One of the benefits of 
our framework is the tight integration of such 
information with functional structures. This 
integration helps designers to systematically explore 
possible causes for each function at each grain-size.  

To capture a larger set of failure modes systematically, 
research has been done on advanced FMEA (e.g. 
 [50], [51]) using behavioral models to simulate device 
behaviors. The model-based diagnosis community 
uses sophisticated qualitative reasoning to identify 

faulty components (e.g.  [52]). Diagnosis using 
hierarchical functional models instead of behavior 
models have been proposed  [14], [53]. These 
approaches based on deviations from “intended” 
behavioral models, however, cannot deal with parts of 
causative chains of faults as was pointed out in 
[54-56]. 

8. Concluding remarks 

The successful deployment of an ontological modeling 
schema for functional knowledge has been reported. 
After we discussed the current problems in industry 
and expected roles of ontologies, six types of real 
usages in deployment, effects of ontologies, and their 
success factors were discussed. One of the main 
success factors was clarifying three types of 
relationships related to functionality (i.e., the is-a 
relation of functions, is-achieved-by (part-of) relations 
between functions, and the is-a relation of ways of 
function achievement) and to provide four types of 
schemata for functional knowledge. Although 
engineers mainly use (general) function 
decomposition trees in deployment, such 
discrimination helps engineers reflect on their own 
knowledge. 

As discussed in Section 6.2, support for deeper 
commitment on functional ontologies is being 
investigated. The authors are planning to develop 
support functionality in SOFAST and to deploy it in 
daily work. The other 13 companies in the SOFAST 
users’ group will help us to improve the software.  

The modeling schema in this article for unintended 
behaviors was a simplified version. We are currently 
investigating more detailed ontological schema aiming 
at explicit representations of design rationales for 
supplementary functions  [35]. In our collaborative 
work with the Delft University of Technology, we are 
extending the framework to include user actions as 
well  [34]. Interoperability between different tasks is 
limited in the sense that the same representation is 
used for all tasks. Dynamic transformation of the 
representation of such models is being investigated. 

The authors believe that Ontology Engineering has 
contributed to the systematization of domain 
knowledge by providing a “theory of content” for 
knowledge, i.e., how to capture knowledge and to 
organize it so that it can be applied to other contexts 
 [37]. Ontology provides fundamental guidelines for 
capturing the target world and for describing it in 
computer systems. This research can be regarded as a 
successful example of this research direction. 

Acknowledgements 

The authors would like to thank Yusuke Koji, Mariko 
Yoshikawa, Tomonobu Takahashi, Masaru Takahashi, 
and Kouji Kozaki for their contributions to this work. 



 

- 13 - 

Special thanks go to Mr. Shuji Shinoki and the 
engineers in the Plant and Production Systems 
Engineering Division of Sumitomo Electric Industries, 
Ltd. for their cooperation with the deployment. 

 

Reference 
[1] Umeda Y, Tomiyama T. Functional Reasoning in Design, 

IEEE Exert 1997:March/April:42-8. 
[2] Chittaro L, Kumar AN. Reasoning about Function and its 

Applications to Engineering, Artificial Intelligence in 
Engineering 1998;12:331-6. 

[3] Chandrasekaran B, Josephson JR. Function in Device 
Representation, Engineering with Computers 
2000;16(3/4):162-77. 

[4] Hubka V, Eder WE. Functions Revisited. In Proc. of 
ICED 01 2001. 

[5] Pahl G, Beitz W. Engineering design - a systematic 
approach. The Design Council; 1988. 

[6] Chandrasekaran B, Goel AK, and Iwasaki Y. Functional 
representation as design rationale. Computer 1993:48-56. 

[7] Miles LD. Techniques of value analysis and engineering. 
McGraw-hill; 1961. 

[8] Gero JS. Design Prototypes: A Knowledge 
Representation Schema for Design. AI Magazine. 
1990;11(4):26-36. 

[9] Andreasen MM, Hansen CT, Mortensen NH. The 
Structuring of Products and Product Programmes. In Proc. 
of the 2nd WDK Workshop on Product Structuring 
1996;15-43. 

[10] Hubka V, Eder WE. Theory of Technical Systems. 
Berlin: Springer-Verlag; 1998. 

[11] De Kleer J. How Circuits Work. Artificial Intelligence 
1984:24;205-80. 

[12] Sembugamoorthy V, Chandrasekaran B. Functional 
representation of devices and compilation of diagnostic 
problem-solving systems. In Experience, memory and 
Reasoning 1986:47-73. 

[13] Keuneke AM. A. Device Representation: the Significance 
of Functional Knowledge. IEEE Expert 1991;24:22-5. 

[14] Chittaro L, Guida G, Tasso C, Toppano E. Functional and 
Teleological Knowledge in the Multi-Modeling Approach 
for Reasoning about Physical Systems: A Case Study in 
Diagnosis. IEEE Transactions on Systems, Man, and 
Cybernetics 1993;23(6):1718-51. 

[15] Lind M. Modeling Goals and Functions of Complex 
Industrial Plants. Applied artificial intelligence 
1994;8:259-83. 

[16] Umeda Y, Ishii M, Yoshioka M, Shimomura Y, 
Tomiyama T. Supporting conceptual design based on the 
function-behavior-state modeler. Artificial Intelligence 
for Engineering Design, Analysis and Manufacturing 
1996;10:275-88. 

[17] Bhatta SR, Goel AK. A Functional Theory of Design 
Patterns. In Proc. of IJCAI-97 1997:294-300. 

[18] Malmqvist J. Improved function-means trees by inclusion 
of design history information. Journal of Engineering 
Design 1997;8(2):107-17. 

[19] Bracewell RH, Wallace KM. Designing a Representation 
to Support Function-Means based Synthesis of 
Mechanical Design Solutions. In Proc of ICED 01. 2001. 

[20] Deng YM. Function and Behavior representation in 
conceptual mechanical design. Artificial Intelligence for 

Engineering Design, Analysis and Manufacturing 
2002;16:343-62. 

[21] Kitamura Y, Sano T, Namba K, Mizoguchi R. A 
Functional Concept Ontology and Its Application to 
Automatic Identification of Functional Structures. 
Advanced Engineering Informatics 2002;16(2):145-63. 

[22] Kitamura Y, Mizoguchi R. Ontology-based description of 
functional design knowledge and its use in a functional 
way server. Expert Systems with Application 
2003;24(2);153-66. 

[23] Kitamura Y, Mizoguchi R. Organizing Knowledge about 
Functional Decomposition. In Proc. of the 14th 
International Conference on Engineering Design (ICED 
03) 2003. 

[24] Kitamura Y, Mizoguchi R. Ontology-based 
systematization of functional knowledge. Journal of 
Engineering Design 2004:15(4): 327-51. 

[25] Gruber TR. A translation approach to portable ontologies. 
Knowledge Acquisition 1993;5(2):199-220. 

[26] Liu Z. Integrating Two Ontology for Electronics. In 
Recent Advances in Qualitative Physics, MIT Press; 1992, 
p. 153-68. 

[27] Gruber TR, Tenenbaum JM, Weber JC. Toward a 
Knowledge Medium for Collaborative Product 
Development. In Proc. of Artificial Intelligence in 
Design ’92 1992;413-32. 

[28] Cutkosky MR, et al. PACT: An Experiment in Integrating 
Concurrent Engineering Systems. Computer 
1993;January:28-37. 

[29] Sekiya T, Tsumaya A, Tomiyama T. Classification of 
Knowledge for Generating Engineering Models - A case 
study of model generation in finite element analysis -. In; 
Finger S, Tomiyama T, Mäntylä, editors. Knowledge 
Intensive Computer Aided Design, Boston: Kluwer 
Academic Publishers; 1999, p. 73-90. 

[30] De Kleer J, Brown JS. A Qualitative Physics based on 
Confluences. Artificial Intelligence 1984;24:7-83. 

[31] Gruber T, Olsen G. Theory Component-Assemblies, 
Ontology Server. http://www-ksl.standford.edu. 1994. 

[32] Borst P, Akkermans H, Top J. Engineering Ontologies. 
Int’l Journal of Human-Computer Studies 
1997;46(2/3):365-406. 

[33] Kumar AN, Upadhyaya SJ. Component-Ontological 
Representation of Function for Reasoning about Devices. 
Artificial Intelligence in Engineering 1998;12:399-415. 

[34] Koji Y, Kitamura Y, Mizoguchi R. Towards modeling 
design rationale of supplementary functions in conceptual 
design. In Proc. of Fifth International Symposium on 
Tools and Methods of Competitive Engineering 2003; 
117-30. 

[35] van der Vegte WF, Kitamura Y, Koji, Y., Mizoguchi R, 
Coping with Unintended Behavior of Users and Products: 
Ontological Modeling of Product Functionality and Use, 
In Proc. of CIE 2004: ASME 2004 Design Engineering 
Technical Conferences and Computers in Engineering 
Conference 2004. DETC2004-57720. To appear. 

[36] Sasajima M, Kitamura Y, Ikeda M, Mizoguchi R. FBRL: 
A Function and Behavior Representation Language. Proc. 
of IJCAI-95 1995;1830–6. 

[37] Mizoguchi R, Kitamura Y. Foundation of Knowledge 
Systematization: Role of Ontological Engineering. In; 
Rajkumar Roy, editors. Industrial Knowledge 
Management - A Micro Level Approach, Springer-Verlag, 
2000; 17-36. 

[38] Chandrasekaran B. Design Problem Solving: A Task 
Analysis. AI Magazine 1990;11(4):59-71. 



 

- 14 - 

[39] Forbus KD. Qualitative Process Theory. Artificial 
Intelligence 1984;24:85-168. 

[40] Salustri FA. Ontological Commitments in 
Knowledge-based Design Software: A Progress Report. 
In Proc. of the Third IFIP Working Group 5.2 Workshop 
on Knowledge Intensive CAD 1998;31-51. 

[41] Horváth I, Vergeest JSM, Kuczogi G. Development and 
Application of Design Concept Ontologies for Contextual 
Conceptualization. In Proc. of 1998 ASME Design 
Engineering Technical Conferences DETC, CD-ROM: 
DETC98/CIE-5701, ASME, New York. 1998. 

[42] Davies J, Fensel D, van Harmelen F, editors. Towards the 
Semantic Web - Ontology-driven Knowledge 
Management. John Wiley & Sons; 2003. 

[43] Rajan JR, Stone RB, Wood KL. Functional Modeling of 
Control Systems. In Proc. of ICED 03 2003. 

[44] Wilhelms S. A Conceptual Design Support System using 
Principle Solution Elements. Proc. of ICED 03 2003. 

[45] Tejima N. et al., editors. Selection of functional terms and 
categorization, Report 49, Soc. of Japanese Value 
Engineering (In Japanese), 1981. 

[46] Hirtz J, Stone RB, McAdams DA, Szykman S, Wood KL. 
A Functional Basis for Engineering Design: Reconciling 
and Evolving Previous Efforts. Research in Engineering 
Design 2002;13:65-82. 

[47] Rosenberg RC, Karnopp DC. Introduction to Physical 
System Dynamics. McGraw-Hill; 1983. 

[48] Gero JS, Kannengiesser U. The Situated 
Function-Behaviour-Structure Framework. In Proc. of 
Artificial Intelligence in Design ’02 2002;89-104. 

[49] Sushkov VV, Mars NJI, Wognum PM. Introduction to 
TIPS: a Theory for Creative Design. Artificial 
Intelligence in Engineering 1995;9. 

[50] Steven K, Peder F, Ishii K. Advanced Failure Modes and 
Effects Analysis of Complex Processes. Proceedings of 
the ASME Design for Manufacturing Conference 1999. 

[51] Hata T, Kobayashi N, Kimura F, Suzuki H. 
Representation of Functional Relations among Parts and 
Its Application to Product Failure Reasoning. Proceedings 
of CIRP International Seminar on Design 2000. 

[52] De Kleer J, Williams BC. Diagnosing Multiple Faults. 
Artificial Intelligence 1987;32:97-130. 

[53] Larsson JE. Diagnosis based on Explicit Means-ends 
Models. Artificial intelligence 1996;80:29-93. 

[54] Davis R. Diagnostic reasoning based on structure and 
behavior. Artificial Intelligence 1984;24:347-410. 

[55] Böttcher C. No fault in sructure? - how to diagnose 
hidden interactions. In Proceedings of IJCAI-95 1995; 
1728-33. 

[56] Kitamura Y, Mizoguchi R. An Ontological Analysis of 
Fault Process and Category of Faults. In Proceedings of 
Tenth International Workshop on Principles of Diagnosis 
(DX-99) 1999;118-128. 

 


	1. Introduction
	2. Ontological approach to sharing functional knowledge
	3. Ontological Modeling Framework
	4. Deployment
	4.1 Understanding and Sharing DRs
	4.2  Equipment Improvement
	4.3 Design Review
	4.4 Patent Map and Patent Applications
	4.5  Sharing with Different Types of Engineers and Sharing i
	4.6  Expanding Alternative Ways of Function Achievement usin

	5. SOFAST® software
	6. Discussion
	6.1  Success Factors for Deployment
	6.2  Limitations

	7. Related work
	7.1 Engineering Ontologies
	7.2 Functional representation
	7.3 Unintended behaviors

	8. Concluding remarks
	Acknowledgements

	Reference


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /FRA <>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


